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The purpose of this thesis is to develop analysis and synthesis tools to improve the
dynamic performance of reconfigurable systems. For simplicity, without losing
generality and physical insight, this dissertation is focused on planar motion. Various
control law strategies are considered and evaluated for the non-minimum phase, non
srictly positive real, time variant system. The strategies include indirect and direct
model reference adaptive controllers, and fixed, robust, and optima controllers.
Particular emphasis is on enabling real time implementation and reducing the requisite
number of experiments to identify the time varying system. System identification is
accomplished for the kinematic nonlinear system via the observer Markov parameters
using data gathering experiments of a minimum of arm orientations. In addition, the
observer Markov parameters can be utilized to reduce the data and improve system
identification results. Theidentified time varying model is augmented with a band pass
filter for frequency weighting and is shown to reduce the controller size. A nove
Spline Varying Optima (SVO) controller is developed for the kinematic nonlinear
system. An example problem is discussed, dl controller coefficients in the SVO
controller are very closely approximated by athird order polynomia in the elbow pitch
angle, theta. There are several advantages to using the SVO controller, in which the
spline function approximates the system model, observer, and controller gain. They
are: the spline function approximation is ssmply connected, thus the SVO controller is

more continuous than traditional gain scheduled controllers when implemented on a



time varying plant; it is easer for red time implementations in storage and
computational effort; where system identification is required, the spline function
requires fewer experiments, namely four experiments, and initia startup estimator
transents are eliminated. The SVO compensator was evauated on a high fiddity
smulation of the Shuttle Remote Manipulator System. The SVO controller
demonstrated significant improvement over the present arm performance: (1) Damping
level wasimproved by afactor of 3; (2) Peak joint torque was reduced by a factor of 2
following Shuttle thruster firings.
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CHAPTER 1

INTRODUCTION

One of the fundamental problems in the operations of flexible manipulators in space is
the duration and rate of decay of their oscillatory motions. Robotic manipulator arms
have traditionally been modeled as composed of rigid links, with collocated actuators
and sensors, to ensure stable and reliable control. In order for the arms to remain rigid
while carrying a payload, they must typically be made with heavy elements, requiring
in turn larger and heavier actuators. These facts have motivated the recent interest in
using lightweight, higher performance robots for both commercia and space-based
applications. The advantages of such lightweight manipulators are many, including
faster system response, lower energy consumption, smaller actuators and trimmer
mechanica design. Obvious tradeoffs, however, complicate the problem of flexible
manipulator control, which focuses primarily on the controller design to compensate for

flexible effects.

Traditionally, ground based manipulators designed to handle payloads in the presence
of gravity weigh 100-200 times the weight of the assigned payload. However, space-
based robots such as the Shuttle Remote Manipulator System (RMS), are designed to
maneuver payloads in the absence of gravity. Due to mass and volume constraints
these manipulators have relatively thin (low stiffness) booms, yet they maneuver
payloads weighing 30-40,000 Ib. The corresponding manipulator to payload weight
ratio is 0.005:1. In addition, space-based robots tend to be much longer than their

terrestrial counterparts. The fundamental bending frequency of these structural systems



is proportiona to the sguare root of the stiffness to payload mass, thus the robotic
systems exhibit long periods of oscillatory motion following routine operationa
maneuvers. As a result, the Shuttle RMS safety operational constraints require
astronauts to wait extended periods of time before they are alowed to command the

next maneuver.

1.1 Background and Previous Research

There are two distinct approaches to reduce residua motions of robotic manipulators
following commanded motions. One approach is to reduce the residua oscillations by
using input command shaping techniques (Seering and Singer, 1990 ). An adaptive
precompensator can be implemented by combining a frequency domain identification
scheme which is used to estimate on-line the moda frequencies and subsequently
update the band stop interval or the spacing between the impulses (Tzes, 1989). The
advantages of the input shaping approach are that accurate identification of plant
parameters, such as frequency and damping, is not critical, and there is no knowledge
requirement for the controller influence coefficients. One disadvantage is a significant
phase lag between the desired input and corresponding motion of the manipulator. This
move time penalty is on the order of one period of the first mode of vibration. The
operator commands the arm to stop, but the end point will continue to move for a few
seconds. As a result, the manipulator does not have the same “fedl” as the current
mani pul ator when used by atrained operator, which could be detrimental when precise
positioning is required. Another disadvantage of command shaping is that it cannot
reject unknown disturbances. For example, oscillations of the Shuttle RMS that result
from the Shuittle thruster firings cannot be damped by an input shaping method applied
solely to the Shuttle RMS.



The second approach of employing output feedback to reduce vibration has been
selected for this thesis. In this approach, output feedback of measurements of the
system response is used in a compensator to derive joint commands designed to damp
the residual motions. An example of this second approach is the work by Prakash,
Adams and Appleby (1989), who used a detailed analytical model of the manipulator to
design model based compensators. Other methods for robust controller design of
flexible link arms and nonlinear control methods were suggested by Korolov, Chen
(1989) and Kreutz and Jamieson, respectively. In Juang (1993) and Feddema (1990) a
model-independent controller for large angle position control of atwo and six-degree of
freedom robot was developed. However, in these methods the passive controller
requires collocation of sensor and actuator. Kanoh and Lee (1985) studied asingle link
flexible arm with a concentrated mass a the tip; smilarly a 12.5 foot steel beam was
constructed at the Jet Propulsion Laboratory (Schaechter, 1982). Both of these studies

used collocated sensors and actuatorsin their experiments.

Shoenwald (1991) and Eider (1990) anadyzed the experimental results of a minimum
time tragjectory control scheme for a two link flexible robot. An off line optimization
routine determined a minimum time, straight linetip trgjectory, which stayed within the
torgque constraints of the motor. The control strategy used alinear quadratic regulator to
determine the feedback gains based on a finite element modd linearized about the
straight line tip trgectory. At some points along the trgectory the gains varied
considerably. When the set of gains was used to control the system, the results were
less than satisfactory. Although the arm did reach the desired end point, there was
considerable error in the tip position aong the way. In an attempt to reduce the
sensitivity of the feedback gainsto modeling errors, asingle gain matrix, optimized for

the average of the workspace, was used. The author (Eisler, 1990) felt that a better



solution would be to use a set of three to four gains that would be scheduled to become

active when major changes in the states occurred.

Optima control has been applied to the nonlinear multilink problem using end point
measurement (non-collocation) with limited success. Oakley (1989, 1990b) explores a
modeling and mode-selection technique to improve the prediction of the manipulator
end-point position. The nonlinear end-point controller based on end-point sensing
incorporates alinear quadratic regulator and a nonlinear estimator. Experiments show
that this technique significantly improves manipulator position tracking over commonly
used collocated control techniques. End point sensing is achieved using a CCD
televison camera to track specia reflectivity targets located at the manipulator end-
point. The nonlinear rigid-flex equations of motion were linearized about an elbow
angle of 75’ in the constant regulator and estimator gain matrices, thus constraining the
usable workspace to small perturbations around the linearized plant. In Oakley (1990a)
a 278 state controller was able to operate over a large workspace while sacrificing on
performance. The authors indicated that if the controller were gain scheduled, the
performance would be much improved for operating points far from the linearization
point. In Sergji (1986) and Hasting (1985), multivariable control is applied to a two-
link robot. The control design is based on alinearized model of the robot dynamics,
and it was noted that perturbations of variables from their nominal values must be kept
small. When large excursions of variables are expected, the controller must be updated
a suitable intermediate positions in order to improve the performance of the control

system.

In Matsuno (1990) a control law is developed for a 6 degree of freedom robot using
acceleration feedback. Matsuno showed that the end effector tip trgectories were

superior in terms of residual motion over the open loop trgectories, although the



available workspace was constrained within small perturbations around the linearized
plant. In Yurkovich (1990), identified models of atwo link manipulator were used in
static and dynamic fixed controller design, where end point accelerations were used.
The controller performance was found to be unsatisfactory for large system parameter

variations, especialy the elbow joint angle.

It has been know for some time (Gevarter, 1970) that if aflexible structure is controlled
by locating every sensor exactly at the actuator it will control, then stable operation is
easy to achieve. Nearly adl commercia robots and most flexible spacecraft are
controlled in this way for this reason. Conversely, when one attempts to control a
flexible structure by applying control torques at one end that are based on a sensor a
the other end, the problem of achieving stability is severe. Solving it is an essentia
step for better control in space; the space-shuttle arm is a cogent example. The next
generation of industrial robots will also need such control capability, since they will
need to be much lighter in weight (to achieve quick response with less power), and they
will need to achieve greater precision by employing end-point sensing (Cannon, 1984).
A direct-drive, laser cutting robot, for example, tracks a curved trgectory, while the
tracking error a the arm tip is required to be less than £ 0.2 mm (Asada, 1987).
Extremely heavy arm inertia resulted when one tries to make the arm construction
sufficiently stiff so that the elastic deformation is less than + 0.2 mm at the am tip
(Asada, 1990).

It has been shown (Hillsley, 1991; Y urkovich, 1990; Oakley, 1988; Kotnik, 1988) that
rigid dynamics control alone cannot achieve accurate and steady link endpoint position.
Kotnik (1988) and Wells present single link laboratory results for a flexible manipulator
in which four separate control strategies are compared and contrasted. Namely, the

control schemes compared are: compensation using classical root locus techniques with



endpoint position feedback, a full state feedback, observer-based design, and
compensation using endpoint acceleration feedback. The results indicated that
acceleration feedback has great potentia in flexible manipulator control. The study
pointed out that the use of acceleration feedback for flexible robot arm control has
intuitive appeal from an engineering design viewpoint. Primary advantages include the
fact that sensing acceleration for control implementation is accomplished with structure
mounted devices so that camera position or field of view are not issues, and that from a

practical viewpoint implementation is easy and inexpensive.

A similar study was performed in Scott (1993), where arm tip acceleration feedback
was used in a model-based compensator for the six degree of freedom Shuttle RMS,
augmented with a mounted 3000 pound payload. However, in this study the
workspace was constrained to small perturbations about a linearized plant. In another
study by Demeo (1992) the workspace of the RMS was extended by developing a
single controller optimized over a range of workspaces using a Quasi-Newton
numerical optimization routine. The control design presented here was relatively simple
in nature, with amotor shaft position feedback loop for rigid body motion control and
the endpoint acceleration feedback loop for flexible motion control.  System
identification studies were employed in lieu of anaytica modeling exercises because
system identification would become increasingly necessary as the level of complexity
for such systems increases. In this study the sensor dynamics and actuator dynamics
were lumped into a single aggregate system. The use of digita filtering techniques
enhanced the quality of the signals used in the control design, and was equivaent to an

a-priori frequency weighted design.

Other feedback methods to reduce vibration include adaptive control algorithms which

is an attractive feedback approach since the plant is changing in time (Lucibello, 1990,



Balestrino, 1983, and Nicosia, 1984, Harashima and Ueshiba, 1986). Adaptive
control can be divided into two subcategories; indirect and direct. Indirect (or explicit)
identifies explicit parameters of the plant. Direct (or implicit) has no parameter
identification. The indirect Model Reference Adaptive Controller (MRAC) does not
solve the non-collocated actuators and sensor problem well for non-minimum phase
plants (Liang, 1990). The ‘one step ahead control law’ inverts the plant transfer
function, thus non-minimum phase plants are not stable for this control law. Even one-
link flexible arms, where linear dynamic models are appropriate (Cannon, 1984),
standard inversion techniques aimed at output trgjectory reproduction fail, due to the
non-minimum phase nature of the transfer function from joint torque to tip position. A
similar difficulty is present when working with the full nonlinear dynamics of a two or
multilink arm, due to the presence of an unstable zero dynamics (De Luca, 1989). The
Direct MRAC requires the plant to be Strictly Positive Real (SPR) when the plant model
states are not available for feedback. A new version of the Direct MRAC has been
developed (Galvez, 1991) which does not require the SPR property of the plant. With
this technique a Dynamic Projection Model (DPM) is adaptively designed so that it
shares a common point on the Nyquist plot at zero frequency with the plant. The

definition of positive definite systemsis summarized in Appendix A.

Dissipative compensators offer an attractive alternative because they circumvent the
sengitivity problems associated with model-based compensators. However, the
practica usefulness of these controllers is limited because stability depends on the
system parametersto be “passive.” Inthe context of network theory, a passive system
represents the driving point impedance of a dissipative network. A network is called
dissipativeif it consists only of resistors, lossy inductors, and lossy capacitors, which
dissipate energy. Dissipative compensators use collocated compatible actuators and

sensors (Joshi, 1991).



Table 1.1 summarizes severa control design techniques. Each control technique is
evauated in terms of constraints, assumptions, and performance models required. For
a reconfigurable system, this thesis proposes the Spline Varying Optima (SVO)

Compensator, which is outlined in Chapter 5.

On the left hand side of Table 1.1, the constraints and fundamental assumptions include
non-minimum phase and Strictly Positive Red (SPR) requirements on the plant and/or
the controller (Liang, 1990). The reference or performance mode refers to the
requirement of a dynamic model which the controller is required to track. Adaptive
plant redization refers to the requirement of real time plant realizations. To be fair to
the non proposed controllers depicted in Table 1.1, some of the constraints are
theoretical in nature, as opposed to practical. For example, although sufficient stability
theory is not yet available, these controllers have performed well for certain systems
that violate the plant and or controller constraints. Thus the conditions are sufficient,
but not necessary as outlined (Liang, 1990). In addition, there are operational
conditions of the SVO controller which are required. These conditions are outlined in

section 4.1.

As shown in Table 1.1, both the direct and indirect MRAC require a reference or
performance model. How one derives such a model for atime varying system is not
clear. In addition, requiring a plant to follow such a reference mode may result in
moving plant poles unnecessarily large distances in the root locus plane to achieve
model following properties.  Both the indirect and direct adaptive control

methodol ogies require extensive use of on-board computer hardware.



Table1.1

Summary of Controller Design Techniques

IMRAC CGT-DRMAC | DPM DRMAC | Proposedin
thisthesis
Type of Model Mode Model Spline
Controller Following Feed | Following Feed | Following Varying
forward forward Feedback Optimal
(SvO)
Plant Non-minimum | SPR None None
Constraints phase
Fundamental Ac=A+BG(t)C | None None
Assumption remains SPR
for al time
Reference or Yes Yes Yes None
Performance
Model Required
AdaptivePlant | Yes None Yes None
realization
Required

1.2 Thesis Objectives and Overview

The primary objective of thisthesisisto develop analysis and synthesis tools which do
not demand the plant constraints, and adaptive redizations as outlined in Table 1.1.
The focusisto improve the dynamic performance of a nonlinear flexible reconfigurable
structure, while minimizing hardware and software modifications to the overall system.
Minima hardware in this sense implies using few and lightweight sensors and
actuators, for example, taking advantage of the actuators that are already on a
reconfigurabl e structure to improve dynamic performance, and using inexpensive flight
qualified sensors such as accelerometers.  Minima software implies using adroit
techniques to minimize the computational burden of the dynamic controller (i.e., small
order controller). In addition, a mgjor emphasis is to reduce the requisite number of

system identification experiments to characterize the system for control law



development. Particular attention is focused on the type of manipulator used on the

Shuttle Remote Manipulator System.

The approach taken for control law design relies on identifying mathematical models
from data. Identified models eliminate the need to develop accurate models of
operational safety functions, sensor, and actuator transfer functions of the system under
control. Experience with complex hardware in the NASA Langley lab has shown that
as system complexity increases, anaytical model based controllersrequire a large order
compensator, and may not be as accurate for control law development as identified

reduced order mathematical models (Belvin, 1991).

In this thesis the dynamic behavior of a space robot maneuvering a heavy payload is
exploited to design severa very small order compensators that improve robot dynamic
performance over a large workspace. There are two main categories of nonlinearities
associated with a multidegree of freedom manipulator; kinetic and kinematic. The
kinetic nonlinearities are associated with nonlinear energy dissipation in the joints, for
example gearbox stiction, friction and backlash. The kinematic nonlinearities include
the nonlinear behavior induced by large angle motion of the manipulator joints,
resulting in configuration changes, which dter the open loop dynamics of the system.
Addressing the kinematic nonlinearities is the main focus of this thesis; although the
nonlinear controllers will be evaluated on a high fidelity smulator which includes the
aforementioned kinetic nonlinearities. A two link planar model will be used to address
the kinematic nonlinear problem. The high fidelity smulator is utilized to investigate
various collocated and non-collocated control strategies, and to evaluate the low order
controller on a highly nonlinear system. Another objective of this thesis is to identify
sensor locations on the structure that enable a time varying non-collocated controller to

operate over awide variety of arm orientations.
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It is shown that the wait time penalty incurred by operators is largely dominated by the
moda damping of the lowest fundamental mode of the manipulator dynamics. The
damping of thisfundamental modeisincreased by minimizing a cost performance index
evaluated over the workspace of the manipulator. A non-dimensional parameter
dependent mathematica modd of a two link manipulator is anadyzed to investigate
various control law designs. Three different compensators that utilize non-collocated
measurement of the time varying system are investigated. The compensators include
fixed, robust, and spline varying optimal (SVO) compensators. This thesis develops a
method to implement each of the compensators in a manner which reduces the

computational burden of real time implementations.

The objectives of the compensator design are asfollows:

* To determine the performance and limitations of collocated control

versus non-collocated control.

* To determine how a traditiona fixed gain dynamic compensator

performs for aplant that is changing in time.

* To determine the performance of a fixed compensator, and if the

resultant stability margins are sufficient to work over alarge workspace.

» Todetermine the performance of traditional robust compensator designs

over alarge workspace.

* To determine what the optimal state dependent compensator is for the
time varying plant. What is its performance in relation to the fixed and

robust compensator.

* To determine what type and number of experiments are required to

design a SVYO compensator. To determine how many different am

11



orientations are necessary to characterize the dynamics over the

workspace.

To ad this investigation, the time varying optimal compensator is implemented on a
Draper simulation of the Shuttle Remote Manipulator System (Gray, 1985) . The fixed
gain compensator developed by the author was evaluated by astronauts at the Johnson
Space Center. The astronaut/operator’s assessment of the fixed gain compensator
noted that there was a“significant increase in damping” (Lepanto, 1992). It was noted
that “Our (NASA/Draper) philosophy has been to design a single compensator that
improves the performance of the RM S for awide range of configurations, and it is clear
that the increase in damping at any one configuration will be lesswith this ‘one size fits
al’ compensator than with a compensator tuned to that specific configuration.” Loads
reduction for the RM S with the fixed gain compensator was also cited as an important
factor severa times during the sessions. The time varying compensator demonstrated
significant improvement over the present arm performance (Scott, 1993): (1) Damping
level wasimproved by afactor of 3 and (2) Peak joint torque was reduced by a factor
of 2 following Shuttle thruster firings. It is expected that with an optima time varying
compensator the damping and the loads will be improved for a larger workspace of the

manipul ator.

1.3 Thesis Organization

Chapter 2 introduces a mathematica model of a manipulator that can be used to
investigate various control law strategies. Lagrangian dynamics are applied to
determine the kinetic and potential energies for the two link system. The resultant

dynamic equations are then organized into a state space model suitable for use in linear
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control system design. First atwo link manipulator is discussed. The equations of
motion are non-dimensionalized to provide a greater understanding of how physical
parameters affect the open loop dynamics. A six degree of freedom manipulator is used
to indicate, and discuss the relative sendtivity of the various input-output transfer
functionsto the joint degrees of freedom, and indicate why the two degree of freedom
model approximates the larger degree of freedom system. Some fundamental
mathematical properties of manipulators such as the frequency separation and the modal

contribution to the open loop infinity norm are discussed.

In Chapter 3 the nonlinear system is identified using the observer Markov Parameters.
Data is gathered from four experiments as the elbow joint angle is moved from 0
degreesto 90 degrees. System identification is then applied to the data to identify the
observer Markov parameters. The observer Markov Parameters are then used to obtain

the system state space matrices as a function of theta.

In Chapter 4 the compensator design is discussed and the control strategy is introduced.
Three compensators are investigated: a fixed gain compensator, a robust dynamic
compensator, and the Spline Varying Optima (SVO) compensator. An example
problem is included to discuss the performance and stability comparisons of the various

controller strategies.

In Chapter 5 various control strategies are applied to a high fidelity simulation of the
shuttle manipulator system. The approach to the RM S active damping feasibility study
isdeveloped as follows. First, a set of payloads and arm configuration combinations
consistent with the types of payloads expected during Space Station assembly were
defined. Second, RMS dynamics and operational characteristics were examined using
the nonlinear Draper RMS Simulator (DRS) code (Gray, 1985). The determination of

13



active damping augmentation feasibility involved the design and smulation of candidate
damping augmentation control laws. For this purpose, system identification methods
were employed on output data from the DRS to identify time varying models which
closely match the DRS response.  With the nonlinear control design models, various
active control law design concepts were evauated, as were the requirements for
feedback sensors to measure arm motions. The find step was the simulation of the
active damping control lawsin amodified version of the DRS, to determine the effects
of system nonlinearities and computer time delays. Chapter 6 includes Conclusion and

Recommendations.
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CHAPTER 2

OPEN LOOP MANIPULATOR MODELING

The problem of modeling articulated flexible mechanical systems has been studied
extensively. Cannon and Schmitz (1984) published the pioneer work in the area of
control and modeling of flexible robot arms. In that work, the mathematica modeling
and the initid experiments have been carried out to address the control of a one link
flexible robot arm where the position of the end effector (tip) is controlled by measuring
that position and using the measurement as a basis for applying control torque to the
other end of the arm (joint). Book, MaizzaNeto and Whitney (1975) directly
approximate a two link flexible robot with a linear model derived from a nonlinear
distributed parameter model. 1n the papers of Balas (1978) and Karkkainen and Halme
(1985) amodal approach to the problem of approximating a general flexible mechanical
systemisused. Book (1979) uses a special technique called lumping approximation to
analyze flexible mechanica systems, assuming that the links bend in a first mode of
vibration. Judd and Falkenburg (1985) apply this method to non rigid articulated
robots; the same technique is adopted by Sunada and Dubowsky (1983) and modified
in such away that more vibration modes are allowed. Chassiakos and Bekey (1985)
approximate the distributed parameter system response. Truckenbrodt (1982) analyzes
the deformation of a chain of éadtic links using the Ritz-Kantorovitch method and

studies the dynamic behavior linearizing the related differential equations.
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No attempt is made in this thesis to improve the modeling techniques for flexible
manipulators. Including high order effects such as foreshortening of the beam only

obfuscate the issues discussed in the control law design.

This chapter discusses the open loop manipulator modeling. First a two link
manipulator is discussed. The equations of motion are non-dimensionalized to provide
a greater understanding of how physical parameters affect the open loop dynamics
(Smart, 1993). A six degree of freedom manipulator model is presented to discuss the
relative sengitivity of the various input-output transfer functions to the joint degrees of
freedom, and to indicate why the two degrees of freedom model approximates the
larger degree of freedom system. The frequency dependence on the payload mass is
then introduced. It is noted that for heavier payloads there is a larger separation
between the first and higher order or residual modes. |f a payload 100 times the mass
of the arm is considered, the 2nd modal frequency is 98 times the frequency of the 1st
mode. In Section 2.4 the open loop infinity norm is utilized to indicate the
predominance of the fundamental mode to the overal performance of the open loop

manipul ator.

2.1 Two Degree of Freedom Manipulator

The material in this section describes a time varying linear model of a flexible two link
manipulator (Figure 2.1). The mathematical model forms the basis for investigating

various control strategies covered in later sections.

The mechanical joint corresponding to 8, angleisreferred to as the shoulder joint, and
the joint corresponding to the 8, angleisreferred to asthe elbow joint. In Figure 2.1,

my and my, refer to point masses at the first and second links respectively. The method
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employed to generate the model utilizes a separable formulation of assumed modes to
represent the transverse displacement due to bending. Lagrangian dynamics are applied
to determine the kinetic and potential energies for the two link system (Smart, 1993).
The resultant dynamic equations are then organized into a state space model suitable for

usein linear control system design.

J
7% -
J3
P
6,
m,
Wi
m
o g2
V 1 13
I i,

Figure2.1  Fexible Manipulator

The denderness ratio of each link is such that rotary inertia and shear deformation
effects may be neglected (i.e. assuming Euler-Bernoulli beam theory). In the following
analysisit is assumed that the squared flexible deflections are negligible compared to
the axia dimension squared (Hasting, 1986). The definition of the variables used in

the model generation are shown in Table 2.1.

The coordinate systems are defined as follows.

Oy 0 Ocos(6) sin(6,)00 O

.= ) 2.1.1
E;lE E]rsm(el) cos(el)%lg ( )

17



D3 0 Oco(6,)

0_ sin(6,)
ngg E—sm(@z) cos(6,)

sin\w |, %’1E
O

WL, JHIL

Table2.1

Definition of Variables used in Model Generation

Volumetric density of link i

Modulus of elasticity of link i

Cross sectional area of link i (constant)

Areamoment of inertiaof link i

Length of link i

Transverse deflection of link i

First spatial derivative of link 1 evaluated at Ly

First time derivative of link 2 evaluated at L,

Spatial variablefor link i

Time

(2.1.2)

(2.1.3)

In Equation (2.1.2) it isimplicitly assumed that the geometric angle at the tip of link 1

created by the eagtic deformation of the link is approximately (07"\’1 / axl)x L
=

In

addition, note that the rigid body rotation of the second member is relative to the slope

at the end of thefirst link. The coordinate axis in (2.1.1-3) are depicted in Figure 2.1.

I, and J represent the local vertical and horizontal axis respectively. The coordinates i,

and 1 represent the rigid body motion of link 1 with respect to the loca vertical axis |,

and J. The coordinates i,, and j, represent the rigid body rotation of link 2 with

respect to i;, and j;.
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Using the coordinate transformations of equations (2.1.2) and (2.1.3), the position for

an elemental massonlink 2at X, takestheform

Fox = Lalg t Wy Ji +Xol3 +Waj3 (2.1.4)

The corresponding velocity for an elemental massonlink 2at X2 is

Mox = ('—191 W, Ll)jl Wy Bhig + (Xo00 + W) j3 — Woti (2.1.5)
where
w = 61 + 92 + V.Vixl—]_ (216)

the dot product of the element velocity is given by

L _2A42 A -2 2,2 . -2
[Py Wz,x = L3167 + 2L101WL|_1 tw, tXow + 2Xo Ny + W5

+2Ly 6, %,00008(6,) + 2,6, W, cos( 6) (2.1.7)
2\ | %o cos(6;) + 2wy L, Wo cos(6)

In accordance with the small angle approximation made in (2.1.2), it is assumed that

Wi, issmall suchthat coswiy,) 01 sin(wi,, ) Owy,. Thus

cos(Q +wy Ll) =~ co5(Q) -w; |, sin(Q)
(2.1.8)

s n(Q + W L1) ~sin(Q) +w |, cog(Q)
where Q is some linear combination of the rigid body rotations. Furthermore, it is
assumed that terms involving the deflection functions and their derivatives with powers
greater than two are negligible, and the kinetic and potential energies may be reduced to
a quadratic form. The above assumptions were made in Smart (1992) where

experimental results were used to confirm the assumption.

In determining the kinetic energy of the two link system, only the transverse eagtic

deformation of each link, W, (X;,t) ,i=1,2, relative to aknown rigid body rotation, 6, ,
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i=1,2, isconsidered. Using Equation (2.1.8) with Q = 6, , the quadratic form of the
kinetic energy for thefirst and second link, T, is

T= TLl +T|_2

) %IoLl (o) (P b + % {71 By

X =l (2.1.9

3l (o o) 5o o)

X2:|_2

In Equation (2.1.9) the tip masses are modeled as lumped masses without rotary
inertia. The potential energy is derived assuming: isotropic beams arein astate of pure
bending, plane sections remain plane after bending, Hooke's Law is applicable and

only small displacements are considered. In addition, the assumptions of Equation

(2.1.8) are used whereby Q =6, + 6,

The equations of motion are developed using the assumed modes method in
conjunction with Lagrange’ s equation. In doing so, the transverse deflection functions
of each beam are written as a linear combination of admissible functions of the spatia
coordinate multiplied by time-dependent generalized coordinates (Meirovitch, 1967).
That is,

w(xt) =5 @(x)at)=g'a=a’p
i=0

N (2.1.10)
wo(x,8) =Y @i (x)e () =yle=c'y
j=0
The quadratic form of the kinetic energy for thefirst link, Ty, IS
1.5 . 1. L
Ty, = EJ{l)ef + EaTl\/|§}>a+ ga'my (2.1.12)
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where

L
I = [ (o) b +mxt] (2.1.12)
L
M® = Iol(pA)lqoqudxl + mle‘Xle (2.1.13)
L
Miz = [ (oA) g + mxdd, (2.1.14)

where 3\ istheinertiaterm for thefirst link, M{JT is the feedforward term from the

joint angle @ to the generalized coordinate or tip displacement term q . MY is the

feedback term from the generalized tip displacement to the joint angle @, and U is the

generalized input.

The quadratic form of the kinetic energy for the second link, Ty, is
T, = %Jl(z) é’12 + leél é’2 + % 352)922 + élaT Ml(aZ)
+0,aTM,, + %aTMgf)m 0,6y, + 0,6 M,

(2.1.15)
+%CT M.c+ETM a

where

)2 = IOLZ (pA)Z(Lf + X3 + 214Xy cos(@z))dxz

2.1.16
+mz(Lf + X3 +2L1x2cos(92)) ( )

X2:L2
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L.
3=, (o) xEdx, + szS\XZ:LZ

3, = IOLZ (pA)z(x§ + Lyxo cos{8,) ), + my (32 + Lyx, cos(6))

XZ:LZ

L
M{D = Io *(oA) 2('—1(»0|_1 +%5 @t Lxod, cos(6,) + XL, cos( 92))dX2

+ mz('—1§0L1 + x5 @, + Lixo@, cos(6;) + %0, C05(92))‘

Xo=Ly
L
M, = ,[O 2 (pA)Z(XE(P'Ll T Xhy COS(GZ))dXZ
+mz(X§(PL1 X0, 005(92)) =L
272
L
M® = [12(0R) (o1, of, + B, 0T, + 201,04 cos{ )]
+ mz((leprl XG0, 0L +20, 6] 005(92)) %=L,
L
My = [ (0A), (e + L cos(82))dxy + mp (s + Lagrcos(6, ) _

L
My, =I02 (PA)zle»UdXz + sz2¢’|X2:|_2

M, = [° (oR) Ty + mpyp|
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(2.1.17)

(2.1.18)

(2.1.19)

(2.1.20)

(2.1.21)

(2.1.22)

(2.1.23)

(2.1.24)



Mea = IOLZ (oA) Z(lel’(lﬂ + QU(PL 005(92))dX2

(2.1.25)
+my( x|+ wl, cos(6,))|
Xo=L,
The quadratic form of the potential energy U is
= 1 Ll "2 1 L2 m\2
v _EIO (B (wi) dx1+§IO (E1),(ws)"dx, (2.1.26)
However
L
Ka :J‘Ol((EI )1CP"§0"T)dX1
(2.1.27)

Ke = IoLz (( El )2 w"w”T)dXZ

Substituting the relations of (2.1.10) into the kinetic and potential energies, the
LagrangianL, is
L=T-U
=13wez + LaTm®a+ g aTMP
2 2

1

+§‘]1(2)912 + 3129192 + L

Egmg+ngg
. ) Lo - 2.1.28
+6,a' M, + %aTMgz)a+ 6,6 My + 6,¢T My, ( )

+§c M.C+cC Mcaa—Ea Kaa—zc KcC

1TK

5 aa—%c KcC

The equations of motion are determined according to Lagrange's equation, which for

conservative systems states
2 gﬁ_gr L
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where
a=[e, 6, a7 o] (2.1.30)
Assuming the squared flexible deflections are negligible compared to the axid

dimension sguared, and the square of the rigid body angular velocity are small

(Hasting, 1986), the Lagrangian reducesto

Mg+Kq=0 (2.1.31)

where M and K are given by

.
BJF) +32 (M](.g-l) + M:g)) Mic B

W = E Ji2 J2 M3, ] MzTcB
MG + M My, MY +%(M§E) +M@)" MLO (2.1.32)
u 0
E MlC MZC Mca MC E

o O O

(2.1.33)

© o oo
o oo
I I O

X
1
B 1ELE1 S

)
S

The following variables are used to non-dimensionalize the equations of motion.

m _ (PAL),
(oAL)," ™ ™ (oar),

L
, Ne=m+n(1+n,), 1, :EZ’

= n; =

_ M
(oAL),”

O El Q
AL =, =, and =—=<
H AL4H ,0 §0 L, ] L, &= Ll ér = L2

Wheren, andn, are non-dimensional parameters which relate the mass at the end of the

link to the mass of the link. ), represents the mass ratio between the first and second
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link and n, is anon-dimensional parameter which simplifies the equations. r_ is the
non-dimensional parameter which relates the length ratio between thetwo links. 1 are
the non-dimensional stiffness properties of the respective links. M, are the mass of the
respective links. @ andy” are the normalized admissible functions of the spatial

coordinates ¢ and ¢ . & andé, arethe normalized displacement along the axis of the

link.

Accordingly, the matrices defined in (2.1.32) and (2.1.33) become

M
J = % + N+ N re % +1, %+{n|_r|_(1+ 2/72)} cos(6;) .13
= Jy; + Jyji cos(6,)
. 01 %
Jpp = %+ + —+ 03| 6
o nzﬁ o 1) (2.1.35)
= J; + Jppji €03 6,)
« 1
Jp = 3 +n, (2.1.36)
Moo ={ 610 061+ meat} + e+ ma |
0 o--tB 0
] D]_ * *\[]
+H7LrLEE + '725401 +@ )Epos(ez) (2.1.37)

= My + Mpaji + Mygii cos(65)
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* Dl *
My, = @"‘Uzmﬂ D"‘D—E}Zl"‘nz oS 6,) ¢

= Myg + Magii cos(6,)

v, ={[6 ¢ e+ nesi ]+er 5t d ]

+{ nr(l+2n)a e } cos(6,)
= Mg + Mgji + Myjii cos(65)

* * * Ell 1 « *
Myc :[I;fzw dé, + oy } + EF—L%'OQU dé, + Ny %05(92)

= My + My ji cos(6;)

Mac =f;52l/f*dfz + Ny

Mca rLMzcﬂl’i @14/ dé; + ’724’1%"1 ﬁcos(@z

= Mca,i + |\/lca,ii COS(BZ)
* 1 * * * *
Me = MyL5 B'O‘.U @ TdE, + UzlﬂllﬂlTE

» _OElOQE x T ye O
Ka=arnde? @ g

* _DED 1 H* H*T D
Ke=arnde? ¥ e
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(2.1.38)

(2.1.39)

(2.1.40)

(2.1.41)

(2.1.42)

(2.1.43)

(2.1.44)

(2.1.45)



Where qf* denotes the derivatives with respect to the non-dimensional spatial variable
&, and @ denotes the evaluation of @ a & =1. ' denotes the derivatives with
respect to the non-dimensional spatia varisble &,, and L,UI denotes the evaluation of

‘l’*atfzz

The non-dimensional matrices defined in 2.1.37 - 2.1.45 are used to create the non-

dimensiona system matrices.

* * * * T
S Jii nured (Mla,i + Mla,ii) nLrEMag B
2 2 20 a*T T
Moy = 0 I nLZrLJ*Z MLrLMaa, '7LrL'V|2c - (2.1.46)
la,i + Mla,ii ’7LrLM2a,i Ivla,i + Ma,ii ’7Lr cal O
E ULfszc ﬂLfszc nLrEMca,i LrL C E
* 2 * *
B Jii N2 Myaii nLrLMlan
2 20 a*T
- L i 0 . NLrEMaaji 0 g (2.1.47
Y" = |:| * * * * |:| b
o Miii  MLFEMzaji E(Ma,iii + Ma}—ii) NLrEMaii
* O]
%YLrLMlcu 0 ancha,n 0 0
Mgs = Mgy + Mg c0(6) (2.1.48)
M O 0 0 0
U
. 0 0 0
K = % . ]
«
00 0 ik
which results in the second order form
[Msy5| + Msysn COS(BZ)] + Ms (CI) fu (2.1.50)
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where

a=[6, 6, a¥ |’ (2.1.51)

The second order system matrices can be put in first order state-space form

x = AX + Bu (2.1.52)
where

x=|6, 6, a' ¢ 6 6, a ¢’ (2.1.53)
Thefirst order state space form of (2.1.50) is given by (2.1.54)

Eélg O M6, 0 O 0

; 0 My O O il

#0pg O 'm20n0 ° @

0 0 My, O O 0

=—gu Lo O

D91D O DD61D 0 %“ (2.1.54)
0.0 g (. 0O O [

BHZB 0 P20 O 0

" L1 * U * 0

S D'nV(Mws)Kws O%LD gnv(M%,s)fD

By B O M8 O O

2.2 Six Degree of Freedom Manipulator

The dynamics of a six degree of freedom manipulator are substantiadly more
complicated than those for the two degree of freedom manipulator shown in the above
section. However, it is worth noting that much of the nonlinear kinematics of the

manipulator are dependent on the elbow pitch joint (2.1.48).
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Figure 2.2.1 Six Degree of Freedom Manipulator

For example, in Figure 2.2.1 the transfer function which relates the shoulder-pitch joint
to an accelerometer located inboard of the x’, y’, Z' reference frame, is not sensitive to
the shoulder yaw or shoulder-pitch joint angle. This thesis will thus focus on the
controller sengitivities of the elbow-pitch angle. In Figure 2.2.1 a schematic of the
RMS system with the placement of the accelerometers located at the end of the second

boom isillustrated. Thissensor location isused in the SRMS example of Chapter five.

2.3 Non-minimum Phase Zeroes and Boundary Conditions

This analysis shows the effect of the base boundary conditions on the poles and zeroes

of the transfer function of the two link model. The base constraint (or boundary

condition a the shoulder joint) experienced on the SRMS is essentialy a fixed
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constraint due to the gearbox ratio of 1842:1. To model the physics of the SRMS with
the high gearbox ratio, the feedback dynamics of the two link arm flexibility were
prevented mathematically from driving the shoulder joint, while the elbow joint
remained fixed. This can be accomplished by eiminating those dynamic feedback
terms from the flexible modes which drive the shoulder joint. Thus the mass matrix of
the two link model is modified as shown below (Juang, 1986). Note that this
representation results in a non-symmetric mass matrix, and is an accurate representation

for very high gearbox ratios.

0 J, 0 0 o O
O 2 1% 2 1% 20 1% T 20 *T O
Mo =0 Mrid Mrid2  MriMaaj  MriMae g (231)
Moys,i * * 2 a% * * 20 2 *T L.
Y EMla,i *Mpii MTEMaa Mg + Mg MiriMeg; B
201 201" 201" 201"
g NriMac MrEMae NfiMeai MLrEMe g
and
0 3 0 0 0 B
21 201
. DL L 0 . NLrEMaqji 0 g
v i = |:| * * * * * |:| 2 2
PG My MrEMaaj E(Ma,iii”Ma,Tiii) N EMeai o (2:3.2)
E{IUEMIC,H 0 MM i 0 %
Thetotal system mass matrix is given by
MZys = M*Q/S,i +M’;ys,ii COS(QZ) (2.3.3)

Notice these mass matrices (2.3.1) and (2.3.2) are similar to those shown in Equations

(2.1.46) and (2.1.47). However, now al feedback termsto 6, in the top row of the
mass matrix M,s and to the right of theinertiaterms J;; and Jj;; have been st to zero

to prevent the arm from back driving the joint & 6,. Thus, as shown in first order
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form, the forward dynamics are retained while preventing backward effects. The State

space model is shown in (2.3.4) with Mg replaced by M.

Bélg 0 M6, 0 O O
"0 0O M, 0 O O
%E o 0 ! 200 % O
0 M, O O O
00 g %ﬂ 00 O
0_p L0, O 4 (2.3.4)
5‘91% B %-918 % O -
SQZS 0 P20 O 0
EfeLD %'nV(Msys)Ksys _mV(Msys)DDDD[kU_iB gnV(Msys)fB
By E O W B O 0

Rate Command

To mathematically model velocity (or rate) command of the two link model, a servo
loop is inserted into the open loop model as was done on the SRMS (Ravindran,

1982).

Rate Torque gP I t
Command Command> 5 . isplacemen -
pen Loop
o 6,
kt - ——

Figure 2.3.1 Control Block Diagram with Rate Command

The servo loop provides the ability to command angular rates as opposed to
commanding torques. It is not advisable to command torque's in space based or
terrestrial manipulators due to high angular rates they may induce. Thusaservo loop is

added to the mathematical mode! as shown in Figure 2.3.1. A proportional gain k; is
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introduced which feeds back to provide sufficient torque to maintain the commanded

velocity as shown in Figure 2.3.2.

Figure 2.3.2 Two Link Mode with Rate Command

To examine the effect of the rate command on the open loop poles and zeroes, severd
example dynamic responses are shown. In the following plots, the two link modd is
used with 8, locked a 0°. The following non-dimensional parameters are used in a
Matlab (Matlab, 1992) simulation of the system modeled in Section 2.2. These non-
dimensiona parameters represent an example problem where both links have the same

mass and stiffness properties. A very heavy mass at the end of the second link is used

for example purposes only (Table 2.3.1). The structural damping used is { = 0.02.

Three sets of analysisare shown in the following section. The first analysis is for the
above model with no base constraint. The second includes the mathematica model of
the gearbox, in which feedback dynamics are prevented from driving the joint

corresponding to 6,. Thethird analysisincludes the rate command servo in addition to
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Table 2.3.1
Non-Dimensiona Parameters used in Experiment

_ My _

Ul—vl—o Massratio of link 1; end massto link 1 mass
M _

N2 —M—2—200 Massratio of link 2; tip massto link 2 mass
_M; _

M _W_l Link massratio: massof link 2 relativetolink 1

L
e =ri:1 Link length ratio: length of link 2to link 1
W = oEl D—18 Non-dimensional stiffness properties of link i
'~ Hw.H

the gearbox model. All the transfer functions indicated show the response from the
input command to the shoulder joint and a sensor located at thearm tip.  In this manner
the non-collocation, non-minimum phase system can be explored. All poles and zeroes
shown in the following tables correspond to the transfer function pole zero form shown

here.

= o - ALEs D o (572" 2).(5= ) N
(&)= A B D K p(s= P (5= o) (2:35)

To smplify discussion only four system modes are shown. The four non-zero pole
locations are the lowest frequency modes. Table 2.3.2 shows the poles and zeroes
with no base constraint. These poles and zeroes are shown in Figure 2.3.3 in the root

locus with no base constraint. Notice in this example there are two open |oop zeroes.
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Table 2.3.2
Poles and Zeroes with No Base Constraint

4 B

-4.3125e+02 0

4.2503e+02 0
-7.8737e-01+3.4913e+02i -3.2062e+01+9.5380e+02i
-7.8737e-01-3.4913e+02i -3.2062e+01-9.5380e+02i
-6.8055e+01 -6.7239e+00+4.9055e+02i
6.9064e+01 -6.7239e+00-4.9055e+02i
0 -1.8390e+00+1.7813e+02i
0 -1.8390e+00-1.7813e+02i
-1.5754e-01+4.7325e+01i
-1.5754e-01-4.7325e+01i

1000

500 - " |

Imag Axis
o
I
|

T

-500 X 1

-100Q . . K . .
-600 -400 -200 0 200 400 600

Red Axis

Figure 2.3.3 Root Locus of Poles and Zeroes - No Base Constraint

When the gearbox model is inserted, Table 2.3.3 indicates that the poles have
significantly changed, while leaving the zeroes unchanged. The poles have a

considerably higher frequency compared to Table 2.3.2. Figure 2.3.4 is a diagram of
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the poles and zeroes in the root locus domain.

Notice that the zeroes are left

unchanged. In Figure 2.3.5 the pulse response from an input command to the shoulder

joint and a sensor located at the arm tip is shown.

Imag Axis

600

400 -

200 -

-200

-400

-600

Table 2.3.3
Poles and Zeroes with Gearbox Model Inserted
Z &
-4.3125e+02 0
4.2503e+02 -4.7843e+00+5.6088e+02i
-7.8737e-01+3.4913e+02i -4.7843e+00-5.6088e+02i
-7.8737e-01-3.4913e+02i -7.1962e-01+2.2726e+02i
-6.8055e+01 -7.1962e-01-2.2726e+02i
6.9064e+01 -3.8345e-01+7.2709e+01i
0 -3.8345e-01-7.2709e+01i
0 -5.6805e-05+7.9551e-01i
-5.6805e-05-7.9551e-01i
0 g ]
2600 -400 2200 0 200 400
Real Axis

Figure 2.3.4 Root Locus of Poles and Zeroes with Gearbox Model
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In Figure 2.3.5, the response is shown for a unit pulse input a the base. The high
frequency dynamics have been replaced with lower frequency dynamics, corresponding
to the insertion of the gearbox model. In this case the constraint a the base is
congtrained do to the gearbox mode versus the pinned condition earlier. There till

exists arigid body mode corresponding to the poles at zero.

When the rate servo is inserted, Table 2.3.4 indicates that the poles have significantly
changed, while leaving the zeroes unchanged. One of the rigid body poles is removed

when compared with the poles and zeroes with the gearbox model inserted.

-3
5 x10

Non Dimensional
Displacement
A
g

_ 1 O . . . .
0 5 10 15 20 25
Seconds

Figure 2.3.5 Pulse Time History with Gearbox Model

These poles and zeroes with the gearbox mode and rate command inserted are shown in

Figure 2.3.6 in the root locus plane. Notice the zeroes remain unchanged yet again.
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Table 2.3.4
Poles and Zeroes with Gearbox Modél
and Rate Command Inserted
Z &
-4.3125e+02 0
4.2503e+02 -4.7843e+00+5.6088e+02i
-7.8737e-01+3.4913e+02i -4.7843e+00-5.6088e+02i
-7.8737e-01-3.4913e+02i -7.1962e-01+2.2726e+02i
-6.8055e+01 -7.1962e-01-2.2726e+02i
6.9064e+01 -7.1338e-01+7.1338e+01i
0 -7.1338e-01-7.1338e+01i
0 -7.8896e-03+7.8896e-01i
-7.8896e-03-7.8896e-01i
-1.2458e+01
600
400 - .
200 - 1
% |
o 0o o .
= *
-200} ; -
-400 |
-600 l l o l l
-600 -400 -200 0 200 400 60C
Red Axis

Figure 2.3.6 Root Locus of Poles and Zeroes with Gearbox Model and Rate
Command
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In Figure 2.3.7 the high frequency dynamics have been replaced with lower frequency
dynamics, corresponding to the insertion of the gearbox model. The displacement in

the negative direction is aresult of a negative unit pulse velocity command.

As shown in the above three examples, the zeroes are left unchanged by the boundary
conditions, while the poles shift. In the time domain the effects of these base
constraints are shown to lower the frequency of the fundamental mode, and to dter the
steady state behavior of the system. The time response of Figure 2.3.7 highlights the
typica behavior of non-minimum phase systems. Notice the response is initialy
upward even though the quas steady state value is negative. This is not the typical
behavior of minimum phase systems. These results are shown to gain more
understanding of the mathematica model used to design the control system, and to
demonstrate the insensitivity of the zeroes of the open loop model to the base boundary

conditions.

0.05

-0.05

o
= O
a B

Non Dimensional
Displacement
O
N

-0.25
-0.3

-0.35
0

20

Seconds

Figure 2.3.7 Pulse Time History with Gearbox Model and Rate Command
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2.4 Frequency Dependence on Payload Mass

In developing the two link model, Euler-Bernoulli beam theory was used for which the
following assumptions are implicit (Graf, 1975). Rotary motion, longitudina motion,
and shear strain of the beam fibers are negligible; beam materia properties and cross
section are symmetric with respect to the neutral bending axis; and structural dampingis
small. A further assumption is that the material properties and cross section do not

depend on x. The system is described by the Equation (2.4.1):
YV(xt) + %y(x,t) =0 (2.4.1)

with boundary conditions:

y(0,t) =0
y(0,t)=0
y'(LY=0 (242
Ely* (L,t) = m¥(L,1)
where p = mass density, A= cross-sectiona area, E= Young's Modulus, | = area

moment of inertia.

The solution to the boundary value problem (2.4.1) and (2.4.2) is expressed as an
infinite product which is then truncated to provide a finite order approximation of the
plant with exact transfer function poles and zeroes (Wie, 1981; Spector, 1988, 1989,
and Goodson, 1970) By applying separation of variables and by taking the Laplace
transform with respect to time, the solution to Equation (2.4.1) has the form:

y(x.t) = at) () (2.4.3)
inserting thisinto (2.4.1) yields

@ (a0 + 226 9(x) = 0 (244
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solving yields:

@(x) = C,sin(Bx) + C, cos(Bx) + C, sinh(Bx) + C, cosh(3x) (2.4.5)
where

o IPA L,

S _iIV = (2.4.6)

where S is the transformed variable and i =+/-1. Transforming the boundary

conditionsto the 8 domain resultsin:

C,+C,=0 (2.4.7)
C,+C,=0 (2.4.8)
and

C,[sin(BL) +sinh(BL)] + C,[cos(BL) + cosh(BL)] = 0 (2.4.9)

EIB°[C,(-cos(BL) - cosh(BL)) + C,(sin(BL) —sinhBL)] =

2 ; : (2.4.10)
w™m,[C,(sin(BL) —sinh(BL)) + C,(cos(BL) — cosh(BL))

Solving the boundary value problem of the Wronskian yields the following matrix.

) _sin(B) +sinh(B) o _cos(B) +cosh(B) L [0]
EBM[sinh(B) - sin(B)] + cos(B) + cosh(B) BM[cosh(B) - cos(B)] +sin(B) +sinh(B)F |0
(2.4.11)
where
M = My and E :E.
PAL, L

Solving for the determinant of Equation (2.4.11) and simplifying yields the following

characteristic equation:
BM sin(B)cosh(B8) -1- BM sinh()cos(8) - cos(8) cosh(B) =0 (2.4.12)

Asthe payload massratio M [ o the characteristic equation (2.4.12) reduces to that

of the hinged problem as shown in Figure 2.4.1 and is given by (2.4.13).

sin(B) cosh(B) —sinh(B)cos(8) = 0 (2.4.13)
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m, EI=Const

AN
2

- »‘
L

Figure 2.4.1 Cantilever Hinged Problem

Frequency separation between sequential modes

A characteristic of this structure is that the frequency separation between the first and
second modal frequency for the manipulator model increases as the payload mass is
increased. Figure 2.4.2 shows the modal frequencies with no payload tip mass
(Meirovitch, 1975). The frequency separation is larger as the payload mass is
increased. Table 2.4.1 shows the frequency separation for various payload to am

mass ratios, M .

m, EI=Const
> |
Z =
Z = -
L
Mode 1 5
|, =1875|—
L mL
Mode 2 El
L = 4.694° |—
L W, —r
Mode 3 El
1y, =7.8552 | —
L mL

Figure 2.4.2 Theoretical Frequency Separation for Cantilever Free Boundary
Condition
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Table2.4.1
Frequency Versus Non-Dimensiond
Payload Mass Ratio
Non-Dimensiona Frequency
i = my model | mode2 | mode3
PAL f1 fa fa
0.1 18.82 124.6 350.3
0.316 14.76 112.4 331.7
1 9.89 104.2 321.7
3.16 5.97 100.6 317.9
10 3.44 99.3 316.5
31.6 1.95 98.9 316.1
100 1.10 98.7 315.9

Figure 2.4.3 shows the frequency ratio versus payload mass ratios for various modes.

Each frequency depicted in the graph is divided by the first moda frequency for the

M
given payload mass ratio Vp where M, is the payload mass and M is the total am

weight. For the non-dimensional manipulator as shown in Figure 2.3.2, with no
payload, and 6,=0, the 2nd modal frequency is 6 timesthe frequency of the 1st mode.
In addition, the 3rd modal frequency is 18 times the frequency of the 1st mode, etc. If
apayload 100 times the mass of the arm is considered, the 2nd modal frequency is 98
times the frequency of the 1st mode. The 3rd moda frequency is 316 times the
frequency of the 1st mode, etc. It isworth noting that for the SRMS, a payload to arm

mass ratio of 100 is considered asmall to medium classin terms of payload size.

42



3
B model
mode 2 -]
B mode 3
]

..C:D, 2 A o .
©
g o -
Q>)\ a *
: a
g | - :
o
o 1- '
W * ¢
(@)}
o
~

0 - o] o] o] o] o] o} o]

1 1 1
-1 0 2 3

1
Logﬁﬁ __mp

pALL

Figure 2.4.3 Frequency Ratio Versus Payload Mass Ratios for Various Modes

2.5 Root Locus of Open Loop System as Theta Varies

The root loci of the characteristic equation for the first two modes are shown below
(Table 2.5.1) for theta varying between zero and 90 degrees. Figure 2.5.1 and 2.5.2
display the roots of the characteristic equation as afunction of the elbow joint angle 6,
in theroot locus domains for the first and second mode respectively. In Figure 2.5.1
the first mode poles shift upward and to the left in the root locus domain as theta is

increased, corresponding to the frequency increasing as thetaincreases.
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Table 2.5.1
Root location for 1st and 2nd Modes as Theta Varies
Root Location
Theta
(Degrees) Mode 1 Mode 2
0 -7.8896e-0307.8896e-01i | -7.1338e-0107.1338e+01i
10 -7.9160e-0307.9160e-01i | -2.6507e-0102.6507e+01i
20 -7.9957e-0307.9957e-01i | -1.4049e-0101.4049e+01i
30 -8.1310e-0308.1310e-01i | -9.5490e-0209.5490e+00i
40 -8.3250e-0308.3259e-01i | -7.2809e-0207.2809e+00i
50 -8.5858e-0308.5858e-01i | -5.9347e-0205.9347e+00i
60 -8.9183e-0308.9183e-01i | -5.0585e-0205.0585e+00i
70 -9.3330e-0309.3330e-01i | -4.4573e-0204.4573e+00i
80 -9.8410e-0309.8410e-01i | -4.0349e-0204.0349e+00i
90 -1.0455e-0201.0455e+00i | -3.7411e-0203.7411e+00i
1.5
Mode 1
1 . O S
05\
wn . .
< 3
< o  )Theta=90 - .  Theta=0{
2 :
E
05/ XY
Sl S
_15 . . . . .
2105 -10 -95 -9 -85 -8 -75
Real Axis x10-3
Figure 2.5.1 First Mode Poles as a Function of Theta



In Figure 2.5.2 the second mode pol es shift downward and to the right in the root locus
domain as theta is increased, corresponding to the frequency decreasing as theta
increases. This is in contrast to the first mode in which the frequency increased.
However, over the entire range of theta there is considerable frequency separation

between the first and successive modes.

80

. .

Thetaﬁ =0

Imag Axis
o

-0.8 -0.7 -0.6 -0.5 -04 -0.3 -0.2 -0.1 0
Real Axis

Figure 2.5.2 Second Mode poles as Function of Theta

2.6 Modal Open Loop Infinity Norm

The cost associated with the first mode versus the residual modes is shown in Figure
2.6.1 asafunction of the elbow joint angle 8, . Each point on this surface plot is the

infinity norm of the Bode plot for theindividual modesas 6, isvaried. Where

Infinity Norm = sup
O<w<oo

H(j “’)H (2.6.1)
u(jw)
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The input/output pair is the torque actuator at the hub and the tip displacement sensor
respectively. This surface plot reflects the fact that the tip motion is largely dominated
by the first mode. The absolute value on the plot is not as important as the relative
dominance of the first versus the respective modes. The parameters used for this heavy

payload simulation are shown in Table 2.4.1.

Infinity
Norm

—_—
2

’g
Mode Number ~ 910 0

Figure 2.6.1 Infinity Norm of Bode Response as a Function of Mode Number and
Theta - Heavy Payload

The exact amplitude ratio of the first mode versus second mode is shown in Figure
2.6.2. Thelog plot indicates that for heavy payloads the response is largely dominated
by thefirst mode. For example, the infinity norm ratio of the 1st versus the 2nd mode

is40:1 and the infinity norm ratio of the 1st versus the 3rd mode is 600:1.

102

101

100

0 10 20 30 40 50 60 70 80 90
Degrees
Figure 2.6.2 Infinity Norm Ratio of 2nd VVersus 1st Mode as a Function of Theta
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For higher order modes the infinity normratio is still larger. Figure 2.6.3 indicates the

infinity norm ratio of 3rd versus 1st mode as a function of theta.

103

102

0O 10 20 30 40 5 6 70 8 90
Degrees

Figure 2.6.3 Infinity Norm Ratio of 3rd Versus 1st Mode as a Function of Theta

For comparison to a zero payload case, Figure 2.6.4 shows the maximum value of the

Bode plot for various values of theta, and mode number for the non-dimensional

parameters shown in Table 2.6.1

Table 2.6.1
Non-Dimensional Parameters used in Zero Payload Experiment
n=Mog . _
1 M, Massratio of link 1; end massto link 1 mass
:&:O . . . .
N2 M, Massratio of link 2; tip massto link 2 mass
N M, Link massratio: massof link 2 relativeto link 1
_ L
ne=7-7 Link length ratio: length of link 2to link 1
Ly
Ogl, O N . . _
U = EM—LI35=18 Non-dimensional stiffness properties of link i
i

When comparing Figure 2.6.4 with 2.6.1, notice that the heavier the payload, the larger
the infinity norm amplitude ratio between the fundamental and the higher modes. These

figures represent the relative dominance of the successive modes as predicted by the
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infinity norm of the Bode response. Thus the plots are associated with inputs that have
broad spectral energy. In actud systems where safety monitoring functions are
included, such as dew rate limitations, the input has a higher spectral energy at the low
end of the frequency spectrum. Thus the open loop response will be further dominated
by the lower frequency modes than those depicted in Figure 2.6.4. In chapter five the
dew rate limits mandated by the Shuttle Remote Manipulator safety monitoring system
will be discussed in greater detail.

Infinity
Norm

Mode Number

Figure 2.6.4 Infinity Norm of Bode Response as a Function of Mode Number and
Theta- Zero Tip Mass

2.7 Summary

This chapter has laid the groundwork for the mathematicd modeling of the
reconfigurable system. The non-dimensionalized second order dynamics have been
decomposed into parameter independent and parameter dependent block matrices. The
equivalent first order state-space form is introduced. The overdl transfer function
sengitivity to the variations in the shoulder yaw, elbow pitch, and wrist roll, yaw and

pitch arm orientations are discussed. A method isintroduced which models the reverse
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dynamics of the gearbox. The non-minimum phase zeroes are explored in light of the
base boundary conditions. It is shown that the zeroes do not change when base
boundary conditions are changed, athough the poles move considerably. Light and
heavy payloads have been explored and their effect on the moda frequencies are
analyzed. For heavier payloads it is shown that the frequency separation between
successive modal frequencies increases. As the payload approachesinfinity it is shown
that the cantilever free problem approaches the cantilever fixed problem. The frequency
separation as a function of thetais examined. It is shown that the fundamental mode
poles shift upward in the root locus domain as theta is increased, corresponding to the
frequency increasing as thetaincreases. Thisisin contrast to the second mode in which
the frequency decreases. However, over the entire range of theta, there is considerable
frequency separation between the first and successive modes. The open loop infinity
norm of the Bode response is examined in moda form as a function of mode, am
orientation, and payload mass, to understand the relative dominance in the time and
frequency domain of the successive modes. It is shown that the response is largely

dominated by the first or fundamental mode.

These observations will be used to aid in the development of the system identification

and controller design methodol ogies discussed in the following chapters.
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CHAPTER 3

SYSTEM IDENTIFICATION

In the past decade many system identification techniques have been developed to
identify state-space models of electro/mechanical space structures for modal analysis or
controller design. Identifying a mathematical model from data eiminates the need to
develop accurate models of operational safety functions, sensor, and actuator transfer
functions of the system under control. As the system complexity increases, accurae
anayticad models increase the time to develop a controller. Large analytical model
based controllers require a large order compensator and may not be as accurate as
identified reduced order mathematical models. Before 1970 a great majority of modal
tests were performed by tuned-dwell techniques (Stroud, 1987). In modal analysis the
parameters include frequencies, damping and mode shapes. For control system design,
accurate actuator influence coefficients are required as well. System identification in
most techniques is accomplished using MIMO time histories to create sampled pulse
response histories. The usual practice uses the Fast Fourier Transforms (FFT)s of the
input and output histories to compute the Frequency Response Functions (FRF)s, and
then use the Inverse Discrete Fourier Transform (IDFT) to compute the sampled pulse
response histories. Another approach isto solve for the Markov parameters directly in
the time domain. This approach obviates the need to compute and store FFTs, FRFs,
and IDFTs, athoughiit is necessary to invert an input matrix which becomes large for
lightly damped systems. An approach by Juang (1993), uses an asymptotically stable

observer to form a stable discrete state-space model, rather than identifying the system
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Markov parameters, which may exhibit very slow decay. The purpose of introducing

an observer isto compress the data and improve system identification results.

In this chapter the Markov parameters are introduced and their relationship to the State
space model is discussed. In practice, if the system is lightly damped, a large number
of system Markov parametersis needed. The observer is introduced in the state space
model and it is shown to decrease the number of estimated parameters to a unique set of
observer Markov parameters. The relationship of the observer state space models on
linear and recurrent networks is shown. The identification of time varying systems is
presented as the observer Markov parameters are identified for various “set points’ of
the time varying plant shown in Figure 3.1. Finally a smply connected observer is
constructed using the observer Markov parameters in an example problem. Various
size observers were identified from the time varying plant and results are discussed.
The observer Markov parameters are then used to construct time varying observer
canonical state space models. In the following theoretical and numerical experimental
results, to smplify the mathematics, the angle 6 (without the subscript) will refer to the

elbow joint angle 6,.

LLLfLLS

)

Figure3.1  TwoLink Model used for System Identification
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3.1 Markov Parameters and the State Space Model

This section describes the rel ationship between the feed forward linear network and the
state space model, which is a common form of representing linear systems (Phan,
1993). The discrete time state space model of an N-th order, m-input, g-output system
isaset of N simultaneous first order difference equations of the form

x(k +1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (3.1.1)

where the dimensionsof A, B, C, and D are nxn, nxm, gxn, and gXm,

respectively. Solving for the output y(k) in terms of the previousinputsyields

k

y(k) =% hu(k-i) (3.1.2)
i=0

where the parameters

hp=D, h =CA*!B k=123.. (3.1.3)

are the Markov parameters (Phan, 1992) of the system described by Equation (3.1.1),
which are also the system pulse response samples. The Markov parameters are

expressed in terms of the system discrete state space matrices A, B, C,and D.

For an asymptoticaly stable system, the pulse response can be neglected after a finite
number of time steps, say p,. The input-output description in Equation (3.1.2) can be
approximated by afinite number of Markov parameters

y(K) = hyu(k) + hu(k - 1) + hu(k = 2)+---+hu(k - p,) (3.1.4)

where p, issufficiently largesothat CA“B=0, k= p,. Notethat the e ements of the

Markov parameters are smply the weights of a single-layer linear network, where
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inputs to the network include both current and past values of the input signa and z1

denotes the time delay operator (see Figure 3.1.1).

u(k) y(k)

u(k-1)

u(k-2)

u(k-p)
Figure 3.1.1 Markov Parameters as Weightsin aLinear Network

In practice, if the system is lightly damped, a large number of system Markov
parametersis needed to maintain (3.1.4) asavalid approximation. The fact that a large
number of system Markov parametersis required to represent a lightly damped system

of the form in Equation (3.1.4) is a major weakness of the representation.

3.2 Observer Markov Parameters

To reduce the number of Markov parameters needed to adequately model the system, an
observer model isintroduced. Adding and subtracting the term Ky(k) to the right hand
side of the state equation in Equation (3.1.1) yields

x(k +1) = Ax(K) + Bu(k) + Ky(k) - Ky(Kk)

= (A+ KC)x(K) + (B + KD)u(k) - Ky(K) (3.2.1)

If K isamatrix sothat A+ KC isdeadbeat of order p, i.e,
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(A+KC)X=0, k=p (3.2.2)

then for k> p the output y(k) can be expressed as afinite difference equation

y(K) = ayy(k =)+ +a,y(k = p) + Bu(k) + Bu(k = 1)+---+B,u(k - p) (3.2.3)

where

a, = —C(A+KC)K 1K

(3.2.4)
B, =C(A+KC)*Y(B+KD), By=hy=D

The matrix K in the above development can be interpreted as an observer gain. The

system considered in Equation (3.1.4) has an observer of the form (Phan, 1992)

X(k +1) = AX(K) + Bu(k) = K[ y(k) = 9(K)]

A A (3.2.5)
y(K) = Cx(K) + Du(k)

Defining the state estimation error e(k) = x(k) — X(k), the equation that governs e(k) is

e(k +1) = (A+ KC)e(k) (3.2.6)

For an observable system, the matrix K exists such that the eigenvalues of A+ KC
may be placed in any desired symmetric configuration. If the matrix K is such that
A+ KC is asymptotically stable, then the estimated state X(k) tends to the true state
x(k) as k tendsto infinity for any initia difference between the assumed observer state
and the actual system state. The matrix K can therefore be interpreted as an observer
gain. The parameters defined as

Y(k) = C(A+KC)*[B+KD, -K]

— [ﬁk’ ak] (327)

are the Markov parameters of an observer system, hence they are referred to as

observer Markov parameters (Juang, 1991).
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Notice that in Equation (3.2.3), the output y(k) is the open loop response of the
system, yet the coefficients a,, [, are related to an observer gain. Consider the
specia case where K is a deadbeat observer gain such that al eigenvalues of A+ KC

are zero, the observer Markov parameters will become identically zero after a finite

number of terms. For lightly damped structures this means that the system can be
described by a reduced number of observer Markov parameters Y (k), instead of an
otherwise large number of the usua system Markov parameters h,. For this reason,

the observer Markov parameters are important in linear system identification.

Equation (3.2.3) can be represented by a single layer of arecurrent network (Phan,
1993) in Figure 3.2.1.

u(k) » V(K
u(k-1) y(k-1)
u(k-2) y(k-2)
u(k-p) y(k-ps)

Figure 3.2.1 A Single Layer of a Recurrent Network

The system Markov parameters or the feed forward network weights are related to the

recurrent network weights by

h =B+ z a;h; (3.2.8)
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Where a, =0, B, =0 for k> p. To describe a system of order N, the number of
observer Markov parameters p must be such that gp= N, where q is the number of
outputs. The implication of this result to the network configuration is that a recurrent
network requires fewer number of parameters or weights than are required by an
equivalent feed forward network. Furthermore, it is not possible to represent a
marginaly stable or unstable system by a feed forward network. However, it is

possible to represent such a system by arecurrent network.

3.3 Identification of Linear Systems

The problem of linear system identification using linear networks is reduced to finding
these network weights from input-output data. The computation may be done off-line
or on-line. In off-line computation the input-output data is aready avallable and a
network representing the system isto be determined. On-line computation refers to the

case where the network weights are continually updated as data is made available.

The weights of the network represented by Equation (3.2.3) can be computed using a
feed forward model (Phan, 1993). For linear systemsit is sufficient to use a one layer
network having as many nodes as the number of outputs. This is a smple linear
parameter estimation problem. The off-line computation is shown first, followed by an

equivalent on-line computation. Equation (3.2.3) can be written as

p k—i
0= 3 [B. e Aot (33.0)

where network weight parameters a,, [, are defined by Equation (3.2.4). Writing

Equation (3.3.1) in matrix form for a set of input-output data N+1 samples long yields:
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y=YV (3.3.2)

where
y=[y(0) y@) - y(p) Y(p+1 - y(N)] (3.3.3)
and
V:[go, B, an Ba Gz ... By ap,] (3.3.4)
and

@O u@ - u(p) u(p+d) - u(N) O

. OO  mp-Ho m(po  m(N-HO

O — —

v-0 Jof " Be-of Bef T B 1)E=é 535

0 OO0 m@®o  mN-p)m

d JoH BoH 7 Bv-pE
The network weight matrices are estimated using the equation
Y =yv* (3.3.6)
or
Y = va[va]'1 (33.7)
where (.)" denotes the pseudo-inverse of the quantity in the parentheses. And
%z[ﬁ’\o, BA]_, &1, Bz, 5{2, ,ép, &p (338)

Note that the least squares solution Y isthe same as the true Markov parameters Y in
(3.3.4) only when there is no noise present and (3.3.5) is of sufficient rank. The least
sguares solution of Equation (3.3.7) can be obtained by an on-line parameter estimation

scheme (Phan, 1993). First write each columnin V as

vV =[r(0), T, @, -] (3.3.9
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so that at each time step k, Equation (3.3.2) can be written as

y(k) = YT (k) (3.3.10)

Therecursive least ,squares equation for the network weightsis simply,

~ ~ ~ 0 T - O
Y(K)=Y(k-2)+|y(k)-Y(k _1)r(k)]Eﬂ+ rr(ﬂ;)T Fzz(kk_ 1§)r (k)g (3.3.11)
where

_ T R(k —
R(K) = Rk - 1) - XK=DERIT(K) Rk =1) (3.3.12)

1+ (k)" R(k =1 (k)

with an arbitrary initial guess ?(O), and R(0) is any arbitrary positive definite matrix.
Other recursive parameter estimation algorithms may be used to replace the standard
least squares a this step, e.g., the projection or instrumental variable methods
(Goodwin, 1984) and (Ljung, 1983).

3.4 ldentification of Time Varying Systems

The observer Markov parameters are identified using (3.3.7) which accurately model
the mathematics at each “set point” of the system. In this way, linear identification
techniques can be used to develop the time varying model. Thus the observer Markov
parameters will depend on the kinematic elbow pitch angle. The time varying system
can bemodeled at each set point using the single layer time varying recurrent network

shown in Figure 3.4.1.

The objective, then is to use data from several arm orientations to derive estimates of

the observer Markov parameters as a function of the elbow joint angle.
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Y(6)=[Bo(6). £i(6). (). Bu(6). Gal6)

using the batch method
V(o) =y (o) [v(ev(e)]

where

y(6)=[y(0) y@ - y(p) Y(p+D - Y(N)]

and

w(0)o w(p-)O mw(p)O

NO)o o

<
=
I
OOOoOoOoOooid

0 ud - ulp u(p+l) --

JOH - Be-oH BpH
yod  HoH

uiN) o

(N -

Hd

N -

[MN?

(N -

D

0
p) [
m%

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

The vector y(6) and matrix V(6) consist of data gathered from system identification

experiments as outlined in the following section.

B«6)

K : - y(K)
T A
u(k-1) y(k-1)
Z_ -1
u(k-2) y(k-2)
. Z_ ~1 .
u(k-p) y(k-p)

Figure 3.4.1 A Single Layer Time Varying Recurrent Network
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3.5 Numerical Experimental Results

In this section the batch method (3.4.2) is used to identify the observer Markov
parameters of the system shownin Table 3.5.1 for ten different arm orientations. Ten
arm orientations were chosen here to show that the third order polynomial, or spline
function approximates the observer Markov parameters. The observer Markov
parameters will be put into the observer canonicad form for control system
development. Data gathering numerical experiments for the ten arm orientations were
used to derive input and output data for use in the batch method. A broad input
spectrum consisting of a random dither was applied. For the following numerica

results, these non-dimensional parameters were used (Table 3.5.1).

Table 3.5.1
Non-Dimensional Parameters used in Numerical Experiment
1 M, Massratio of link 1; end massto link 1 mass
M _
’72—M_2—200 Massratio of link 2; tip massto link 2 mass
_M; _
N ——1—1 Link massratio: massof link 2 relativeto link 1
_L_
e —rl =1 Link length ratio: length of link 2to link 1
Ui = o E'Ii3D:18 Non-dimensional stiffness properties of link i
v, H

The first results in Table 3.5.2 show the identified time varying system for p=2
corresponding to a system of order 2. As was shown in Chapter 2, the response is

largely dominated by the first system mode (see Figure 2.6.1).
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Using the batch method the observer Markov parameters were identified. Table 3.5.2

shows the identified observer for p=2.

Y(6)=[Bol6) B6) @x(6) Ba(6) G2(6)] (35.1)
Table 3.5.2
|dentified Observer Markov Parameters- p=2
Dy B®) | A6 @) pye) | G2Af)
0 -3.7379e-16 | 2.7522e-04 | 1.7132 | 1.2007e-04 | -0.9521
10 -1.9967e-16 | 2.7676e-04 | 1.7116 | 1.2158e-04 | -0.9522
20 3.4113e-16 | 2.8147e-04 | 1.7069 | 1.2620e-04 | -0.9524
30 1.1819e-16 | 2.8961e-04 | 1.6987 | 1.3422e-04 @ -0.9528
40 -1.0406e-17 | 3.0163e-04 | 1.6866 | 1.4620e-04 | -0.9533
50 9.7203e-17 | 3.1826e-04 | 1.6700 | 1.6297e-04 | -0.9540
60 2.2409e-16 | 3.4051e-04 | 1.6480 | 1.8579e-04  -0.9551
70 -2.2244e-16 | 3.6978e-04 | 1.6191 | 2.1651e-04 | -0.9564
80 -0.6469e-17 | 4.0792e-04 | 1.5816 | 2.5772e-04 | -0.9582
90 -4.4990e-16 | 4.5712e-04 | 1.5329 | 3.1299e-04 | -0.9607

In Figure 3.5.1 - 3.5.4 the observer elements shown in Table 3.5.2 are plotted and a
spline function approximation is fit to the data as 6, is varied from O degrees to 90

degrees. Note thefirst columnisthe D matrix which should be zero, since there is no

feed through term in the system. In all cases, except for the ,[§0(9) term, which is

zero, a third order polynomia fit the data exactly. The third order approximation,
requires four constants for each polynomia. Thus, these four constants can be

identified using four system identification experiments.
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5.00e-4

B,(6) =2.7464(10)™* +2.2603(10) 7
' +3.589(10) °62 +1.8167(10) °6°

B.(6)

2.00e-4 T T T T T T T T

0 20 40 60 80 100
Theta

Figure 3.5.1 Identified Polynomial Bl(e) as Function of Theta

1.8
a,(6) =17138-2.3008(10) %8
- 3.803(10) %62 +1.7652(10) ' 6°

1.7

a,(6)

1.6

15 ' 1 T T T T T T

0 20 40 60 80 100
Theta

Figure 3.5.2 Identified Polynomia a;(6) as Function of Theta
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4.00e-4

B,(6) =1192(10)™ +3.2714(10) 0
~1.4431(10) 6% + 2.4008(10) 63

B,(6)

100
Theta
Figure 3.5.3 Identified Polynomia S3,(6)
-0.952 T
-0.954 A
-0.956
a,(6)
-0.958 -
0960 - a,(8) =-0.95209-14922(10)°6
' +6.1364(10) 862 - 1.0556(10) 2 6°
-0.962 : . - : , ; . .
0 20 40 60 80 100

Theta
Figure 3.5.4 Identified Polynomia a,(6)

The observer Markov parameters reduced the complex mathematical model to a simply
connected spline function. This has not been previoudly reported in the literature. This
observation will be used later to design controllers for this system. The observer

Markov parameters are the key to reducing the highly heterogeneous parameters in
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observer based models to one ssmply connected observer. Understanding how the
essential kernel of the mathematical problem is changing with a measurable state, such
asthe elbow joint angle, is fundamental to designing low order high performance time

varying controllers.

In Table 3.5.3 the results of the identified Markov parameters is shown for p=4
corresponding to a system of order 4. The purpose of this experiment is to identify an
appropriate curve fit for the higher order system. Using the batch method, the observer

Markov parameters were identified.

A A N

V(O)=[o(6) Bi6) @x6) Ba(6) G26) Bu(6) x(6) Au(6) au(6)]

(35.2)
Notice that after about 30 degrees (for p=4) there is not much change in the observer
Markov parameters. The first Markov parameter is essentially zero, and no atempt is
made to fit the data to the exponential function. However, the rest of the Markov
parameters are approximated by the exponential function and are shown in Figures
3.5.5-12. In each graph the identified Markov parameters are shown by a“+” and the
exponential function isrepresented by an “x”. Each exponentia function curve fit is of
the form:

6

1(6)=C +Cpe™ (35.3)
The curvefitfor p=4 isnot as accurate as for p=2. Since the canonica forms are
numerically sendtive to the Markov parameters, the exponential curve fit is not as
accurate as the identified Markov parameters. The eigenvalues and eigenvectors
associated with the observer Markov parameters are found to be very sensitive to the
exponentia function. When controlling the higher order dynamics, it was found that a
higher order curve fit is required to more accurately fit the data. However, if an

accurate curve fit function is not available one can smply use the identified parameters
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Table 3.5.3
|dentified Observer Markov Parameters- p=4

Dayey | PO | BE) GO pye) | &(0)
0 2.0861le-15 | 7.1658e-05 1.1835 | -3.0718e-03| -.32979
10 -1.4219e-13 | 1.1920e-03 3.5036 | -4.0705e-03| -4.9931
20 -3.8531e-13 | 1.3309e-03 3.8531 | -4.1363e-03| -5.6984
30 8.8561e-13 | 1.3609e-03 3.9297 | -4.1504e-03| -5.8539
40 2.8695e-12 | 1.3719e-03 3.9577 | -4.1560e-03| -5.9112
50 -1.2457e-12 | 1.3771e-03 3.9710 | -4.1589e-03 -5.9384
60 -3.0983e-12 | 1.3800e-03 3.9782 | -4.1605e-03| -5.9533
70 1.9590e-13 | 1.3818e-03 3.9825 | -4.1615e-03| -5.9622
80 4.6381e-12 | 1.3830e-03 3.9852 | -4.1621e-03| -5.9678
90 -2.3083e-11 | 1.3838e-03 3.9869 | -4.1625e-03| -5.9713

Table 3.5.3 Continued
Identified Observer Markov Parameters- p=4
i B ORI O AC) 44(6)
0 3.0900e-03 | 1.1055 | -8.7649e-05 @ -9.6040e-01
10 4.0734e-03 | 3.4747 | -1.1944e-03 | -9.8547e-01
20 4.1388e-03 | 3.8374 | -1.3333e-03 | -9.9211e-01
30 4.1530e-03 | 3.9187 | -1.3634e-03 | -9.9450e-01
40 4.1587e-03 | 3.9491 | -1.3745e-03 | -9.9569e-01
50 4.1615e-03 | 3.9638 | -1.3798e-03 | -9.9640e-01
60 4.1631e-03 | 3.9719 | -1.3826e-03 | -9.9685e-01
70 4.1640e-03 | 3.9768 | -1.3843e-03 | -9.9715e-01
80 4.1644e-03 | 3.9799 | -1.3853e-03 | -9.9735e-01
90 4.1645e-03 | 3.9818 | -1.3859e-03 | -9.9748e-01
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in again scheduled controller. Perhaps if more data were used and a higher order curve

fit yielded more accurate results, a function could be used to represent this nonlinear

system.

1.2
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By(6)
0.6
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0.2

x10-3 ]
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T Do
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Figure 3.5.5 Identified Exponential Function [31(0) -p=4
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Figure 3.5.6 Identified Exponential Function a;(6) - p=4
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3.6 Observer Canonical State Space Model

In this section the observer Markov parameters are used to derive a discrete observer
canonical state space model. There is a direct way of determining the system matrices
A(6), B(6), C, and D(6) without first computing the system Markov parameters.
In this similarity transformation the time varying state space model is derived quickly
for control system design. Note that there is no need for induction (3.2.8), which
unnecessarily increases control design development time. Using the state space model,

the optimal regulator is then designed in the following chapter.

Thefinite difference equation for y(k) is

y(K) = a1(8)y(k—-1) + a,(0)y(k — 2)+---
o+ a0y (0)Y(k = p) + Bo(O)U(K) + B (O)u(k D+ +B,(O)u(k - p)  (3.6.1)

Choose the state variables as

Xp(K) = (k) = Bo(B)u(k)
Xp-1(K) = y(k +1) = Bo(O)u(k +1)
—a1(8)y(k) = Bi(B)u(k)
Xp-2(K) = y(k +2) = By (O)u(k +2) (3.6.2)
—a1(6)y(k +1) = B (O)u(k +1)
—a,(6)y(k +1) = B>(O)u(k)

X (K) = y(k+ p—1) = Bo(O)u(k + p-1)
—ay(0)y(k+ p—2) =By (O)u(k + p-2)
—a(0)y(k+ p-3) - Bp(O)u(k+ p-3)

~0p-1(0)y(K) — Bp-1(6)u(k)

This set of equationsyields
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y(K) = xp(K) + Bo(6)u(k)
Xp-1(K) = x(k +1) = a1 (0)y(k) = B, (8)u(k)
Xp-2(K) = Xp_1(k+1) = a5(8)y(k) — B2(6)u(k)

% (K) = xp(k+1) = ap_1(0)y(K) = Bp-1(6)u(k)
X (k+1) = ap(6)y(k) + Bp-1(O)u(k)

Equation (3.6.3) can be arranged in matrix form as

x(k +1) = A(B)x(K) + B(8)u(K)
y(K) = Cx(k) + D(8)u(k)

where
(k) O
Fe(g
x(K) = DGg(K) O
0. 0
0O° 0
Fp(K)H
M 00 0 ay6)0
% 00 0 ap_l(e)g
AB)=D 1 0 0 a,,(6)0
o . . - . O
g oo -
M 00 1 a8 B

0 B,(6)- a,(6)By(6) T
B,4(6) -~ @, (0)B,(6)
B(6) = [Fy-+(6) = 0, (6)5,(6)]

: U
3 B(6) - a,(6)B,(6) H

OO

c=[0 0 0 .. 1

D(6) = 5,(6)
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When using a deadbeat observer it is interesting to see the relationship between the
observer gain and the Markov parameters. For example, consider the observer form
above for a2nd order system. The eigenvalues of the estimator dynamics are zero for a

deadbeat observer, thus,
‘ 2| _ 2 _
-Al +[A(6) + K(6)C] ‘ =A2=0 (3.6.10)

or

00 OO0 ax(8)0 [Ky(6) |
A0 H @) Boaf” 187

(3.6.11)
Solving for the determinant gives
B-A +a,(8) + Ky(6) (a2(6) + Ka(6))(1(6) + Ko(6) %
0 ay(6)+Ka(6) - +ay(6) +Ky(6) + aZ(6) + 20’1(9)K2(9) +K3(6)
= A% = 2)a,(6) - 2AK,(8) - Aaf(8) — 2Aa,(6)K,(8) — AKZ(6) (3.6.12)
+a3(6) - 2a,(6)Ky(6) + KE(6) =0
Factoring the expression (3.6.12) gives
2 +(~2a,(6) - 2a1(6)Ko(6) ~ K3(6) - 2Ky(6) - af (B)2
) (3.6.13)
+(a3(0) +20,(6)Ky(6) + K7(6)) = 0
Setting Equation (3.6.13) to zero yields the two following equations:
~2a1,(6) - 201, (6)K,(6) — K5(6) - 2Ky (6) - a7 (6) = 0 (3.6.14)
and
a5(6) +2a,(6)K,(6) + K7 (6) =0 (3.6.15)
Solving (3.6.15) for K,(0) yields
Ky(6) = —a,(6) (3.6.16)
Inserting (3.6.16) into (3.6.14) and solving yields
K2(8) = —ay(6) (3.6.17)
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The dgnificance of (3.6.16) and (3.6.17) is that the estimator gains are identified
directly from the data. This fact will be used later during the control system design in

Chapter 4.

3.7 Summary

This chapter presents the basic concepts of the time varying network as related to the
problem of modeling atime varying system. Two basic forms of the network, the feed
forward and the recurrent network, are discussed. Emphasis is placed on the
interpretation of the time varying networks in terms of time varying state space
systems. The relationship between the feed forward time varying network and the time

varying observer model is explained.

The main contribution of this chapter is the fact that the performance or fundamental
mode observer Markov parameters, which are unique, satisfy a third order
approximation, or spline function as a function of the elbow joint angle (68,) when
p=2. This has not been previoudy reported in the literature. The third order
approximation, or spline function, requires four constants for each polynomial. These
four constants can be identified using four system identification experiments. Thus, if
an accurate physical model is not available, identification can be accomplished for the
optima controller via the observer Markov parameters, using data gathering
experiments of four arm orientations. This observation will be used later to design

controllersfor this system.
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In addition, it was observed that when the size of the observer was increased, the
Markov parameter fit an exponentia function of the elbow joint angle (6,). However,
the eilgenvalues and elgenvectors associated with the observer Markov parameters were
found to be very sendtive to the exponential function. There may be other more
accurate high order functions which would yield more accurate eigenvalues and
eigenvectors. In conclusion, when controlling the fundamenta mode, the spline
function approximation is an exact approximation of the fundamental dynamics. The
higher modes can till be controlled, although a higher order curvefitisrequired. If an
accurate curvefit is not attainable a standard look up tablein again scheduled controller

could be assembled using the identified Markov parameters.

Thereisadirect way of determining the system matrices A(6), B(6), C, and D(6)
without first computing the system Markov parameters by using the observer canonical
state space model form. In this smilarity transformation, the time varying state space
model is derived quickly for control system design. Note that there is no need for

induction which unnecessarily increases control design development time.
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CHAPTER 4

COMPENSATOR DESIGN

The identification results of Chapter 3 will be used in this chapter to design the
compensator. This chapter is organized as follows. First, two characteristics of
reconfigurable structures are used to develop the controller implementation strategy.
The two characteristics shown in Chapter 2 are: There is an attenuation of the infinity
norm of the amplitude of the higher frequency modes in the response; and there is a
considerable frequency separation between consecutive modes for the cantilevered two
link manipulator which represents the fundamental dynamics of the system. The
overal controller implementation strategy is introduced. The overal strategy is to
design the compensator for performance and then adjust for stability. The compensator
design section describes four different types of compensator designs. The first section
derives afixed gain dynamic compensator. This section providesinsight of the stability
of the compensator when large variations of the plant exist. The second section derives
the equations necessary for a robust fixed compensator to a time varying plant. The
third section derives the equations necessary to obtain an optima gain scheduled
compensator where the dynamics matrix remains fixed and the output gain matrix is
allowed to vary. Also in this section an adaptive frequency domain compensator is
described which requires no a-priori knowledge of the changing plant dynamics. The
fourth section develops a Spline Varying Optima (SVO) Controller in which a time
varying observer/controller isderived. The SVO controller developed in this chapter is
the first simply connected time varying compensator shown in the literature. The SVO

controller includes elements whose parameters change in time. The eements of the
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dynamic matrices change according to a polynomia which fits the linear quadratic
regulator optimal gain designed at each arm configuration. In this way minima on
board computing is required. Following the theoretica development, an example
problem is introduced and the performance of each controller is compared. Each
controller design is evaluated using a consistent cost function. . With the SVO
controller there is an improvement of 20:1 over the open loop manipulator dynamics
along therange of motion. Finally, the stability of the SYO compensator is examined
by evaluating the minimum singular value of the return difference matrix. In the

development that follows, the angle 8 refersto the elbow pitch joint angle.

4.1 Controller Implementation Strategy

One feature of the implementation of the compensator is important to discuss prior to
investigating the stability of the closed loop system. The fundamental assumption is the
system dynamics do not change while the compensator is operational. This is an
important assumption since there presently are no theorems to address the stability
issues associated with allowing the implementation of the SVO during an am
maneuver. The SVO controller will reduce thetip vibratory response after the operator
has maneuvered the arm. Since the joints on the reconfigurable structure have gearbox
elements, the flexible energy of the structure does not back drive the joints, as
described in section 2.3. In the proposed controller the shoulder joint of the
manipulator is the most effective actuator to improve the damping level of the first
mode. Thus the elbow joint will remain fixed and the shoulder actuator will remain

active after the operator finishes the maneuver.
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4.2 Fixed Optimal Compensator

One approach to improving the performance of the manipulator is to design a
compensator for a linearized state space model about a nominal arm orientation, and
then see how well the compensator performs while the kinematics are alowed to vary.
Although thisis not arecommended approach, it does provide some useful insights and
answers some basic questions, such as “Are the dynamics changing significantly
enough to warrant a more sophisticated time varying or robust controller”” The
approach taken in this section is to design one fixed controller which is “optimized’
about a nominal arm orientation. A heuristic method is applied to “identify” this

nominal model. The nominal model isidentified by the following procedure:

(1) Designanoptimal controller for a*“set point” or arm orientation.

(2) Evauate the performance of this controller as the open loop system
dynamics are varied by using an additive cost function (described later).

(3) Design an optimal controller for successive arm orientations and repeat step

two until al “set point” controllers have been evaluated.

In this manner the controller that has the lowest additive cost function, and hence the
nominal arm orientation is“identified.” The optimal fixed compensator designed about
the nomina arm orientation will use standard observer based state feedback, where
assumptions are made concerning the process and measurement noise covariance's.
Since the controller is operating over a dynamicaly changing system, these
assumptions are a best dubious. However, as stated earlier, this is an exercise to
examine how well one controller could perform, and whether more sophisticated
controllers are warranted. In Section 4.3, a more rigorous approach is applied to

ensure stability for the closed loop time varying system. In either case, since the
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observer is meaningless for the time varying system, the controller stateislabeled z, as

opposed to the state estimate X, and the controller will be referred to as a dynamic

compensator, as opposed to the traditional state feedback controller.

Thetime varying plant model as outlined in Chapter 2 is given by,
x = A6 )x + B(8 Ju+Gw

y=C(6)x+D(8)u+v (424

with process noise and measurement noise covariance's.

E{w} =E{v} =0, E{ww}=Q,, E{w}=R, E{w}=0

Where x is the state, A(8) the dynamic matrix & &, B(6) the control influence

matrix, C(8,) isthe system output matrix, D(6,) the direct transmission matrix, and y
isthe plant output. Using afixed dynamic compensator of the form:

z=Az+Bu+Kily-}]

where z isthe controller state, and K; is the steady state Kalman filter gain solved for a
nominal arm configuration described below. Subgtituting yields:

z=(A -KC)z+(B -K,D)u+K;y (4.2.3)

Using a state feedback gain C;, the control input is given by:
u=C.z (4.2.4)

To minimize the Linear Quadratic Regulator (LQR) cost function:
J= J’[yTQy +u' Ru]dt (4.2.5)
0

The control gain matrix C, isgiven by

C.=-RB'P (4.2.6)
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The matrix P=P' =20 is computed from the solution of the following agebraic

Riccati equation:
ATP+PA -PBRIBTP+Q=0

Inserting (4.2.4) into (4.2.2) yields:
2= (A - KiG +BC, ~KDC)z+Kjy

Substituting

A=A -KG+BC -KDGC,
B = K;

into (4.2.8) yields the fixed compensator equations.

z=Az+By

u=C.z

(4.2.7)

(4.2.8)

(4.2.9)

(4.2.10)

Thus, the fixed dynamic compensator is given by the following transfer function:

G(5) =C(sl - A) ‘B, + D,

(4.2.11)

A control block diagram of the fixed optimal compensator is shown in Figure 4.2.1.

y=C(6)x +D(O)u

U, U, x=A(0) x+B(6)u
»@ >
u2

e

z=A,z+ B,y

Figure 4.2.1 Fixed Dynamic Compensator

y

The plant dynamic equations for the time varying systemis u, =0, and u=u, = u,:

x =A(6,)x+ B(6)u
y=C(6,)x+D(6,)u
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The state equations for zero exogenous inputs are:

X = A(6)x + B(6)Cyz
z=(ALC(6) +B.D(6)C;)z + B.LC(6)X
y=C(6)x+ D(6)u

=C(6)x + D(6)C,z

These equations (4.2.13) written in block matrix form are:

D<D:DA(9i) B(6)C. mxO
#H HB.c6) A +B.D(6)C.HEH
yo_ [(€(6) D(6)CcxO

W Ho o fhf

The Linear Quadratic Regulator (LQR) cost function is given by

6) = }[yTQy+ u’ Ruldt
0

inserting
u"=27c]

y' =x"C(8)" +2'ClD(8)"

into (4.2.15) yields
) T T T~T N\ T . ] 0
J(eo:jgx c(@)" +2'c]o(@) }QC6)x+ D(@)CA T
0Bz CTRC,2 H
rewriting (4.2.16)
mEkTC(ei )TQC(6)x+x"C(6;)" QD(6;)C,Z =
3(8) = [B2'C; D(8) QC(6)x + 2 C: D(8) ' QD(6)Coze
’®z'clRC.z g

which can be written in matrix block form
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(4.2.14)

(4.2.15)

(4.2.16)

(4.2.16)

(4.2.17)



0 C(8)'QC(6) C(6)"QD(6,)C, (]
RIC.

38) :I[XT zT]% el

ID(e)TQc(e) (D@ Qp8) +

let X be an augmented vector of the plant state and compensator state

)_(:D<D
]

Then the cost can be rewritten as

a6 = [X'Q(8)xc
0

where

500 2 S(6)'QC(8) c(e)'Qp(@)C, O
)= Brb@)Tc8) cI(p@)Tend) +RIcg

and the augmented state vector satisfies the equation

X = A(6)X

OA(6) B(6)C. O

AB)=Mac@) A+BD@)CE

(4.2.18)

(4.2.19)

(4.2.20)

(4.2.21)

(4.2.22)

(4.2.23)

If A(6,) isstable, there exists a symmetric positive definite matrix P which satisfies the

Lyapunov equation:

A(6)"P(6)+P(6)A(8)+Q(8)=0
the cost can be rewritten as

J(6) = ‘_OFYT(E\(@ )TP(8)+P(8)A(6))xdt
0
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yields
SIXTP8)%] = T (A(6)TP(6) + P(8)AE))X
The cost is rewritten using (4.2.28) and (4.2.25)
9 d e -
J(Q,) =—1—IX P(G,)X dt
2l
=-[x"P(8)x];
= ~(%P(8)%, =% P(6)%)
If A(6,) stablethen X, =0, and the cost is:

J(6) =% P(8)%

(4.2.26)

(4.2.27)

(4.2.28)

(4.2.29)

(4.2.30)

Thus, the infinite time total cost of the control effort for the fixed compensator

G.(s) = Cc(sl - A;)_l B. + D, over the workspace is the sum of each cost a the

respective values of theta. The total cost varies for the nominal compensator G, which

isoptimal only for afixed arm orientation 6,

T5(Ge) = éoj(ei)

where the fixed compensator state matrices are given by:

A=A -KG +BC -KDC
B =K
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Thus by finding the minimum value of

T,(G) (4.2.33)

for various nomina compensators, the ‘optima’ nomina fixed gain compensator is

found. Anexampleisshown in Section 4.6.

4.3 Fixed Robust Dynamic Compensator

The main focus of the discussion in this section is the stability of feedback control
systems. There is a difference between nominal stability and stability-robustness.
Nominal stability relates to the stability of the feedback loop that employs the
mathematical model of the nominal plant. Stability-robustness refers to the stability of
the feedback loop that contains the actual plant. The fact that model errors cannot be
precisely defined presents a significant chalenge in ensuring closed-loop stability.
Indeed, model errors may not correspond to a finite-dimensional dynamic system (a
very small but unknown time-delay is a good example), so that a State-space
representation for modeling errorsisinappropriate. Thus, checking the eigenvalues of
aparticular matrix is not sufficient for stability-robustness, unlike the eigenvalue based
tests which are available for deducing nominal stability using state-space models. This
state of affairs forces the examination of stability-robustness using frequency domain

ideas and tests.
To derive these frequency domain stability-robustness tests for SISO feedback loops,

one can use the familiar Nyquist stability criterion. However, to develop stability-

robustness tests for multivariable feedback systems, it is necessary to develop a MIMO
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Nyquist stability criterion. MIMO Nyquist tests using the singular value concept can
also be used to arrive at stability for MIMO systems.

Nominal Stability and Stability-Robustness

The nominal compensator G.(s) developed for the plant G(s) that was discussed in
the preceding section will be used in this section as the initid compensator. The
nominal compensator G;(s) is modified by changing the output gain C_ such that the
nominal feedback loop shown in Figure 4.3.1 isrobust. Thus the nomina feedback

loop addresses the nominal stability issue.

Gn(s) Gc(s)
u(s) ” ~ y(s)
e C(sl-A) ‘B, —|C. (sI-A) B -

Figure 4.3.1 Fixed Robust Compensator - Nominal Stability

Alternatively the nominal or average model could have been computed in the state space

domain by the following procedure (Anderson, 1989).

Step 1: Compute the Average Model

G(6;,9) = C(6)(sl - A6)) "B(6) +D(6) (Plant Models) (4.3.1)
EB(el)B
6
Aave=diag[A(91), A(6y), ... A(Bp)], Bave = ég(; Z)E (4.3.2)
0
B0,)
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1 12
Care = <[C(B). C(6). - C(6p)]. Dae =5 DIB) (4.3.3)
=1

-1
Gave(S) = Cave(S! ~ Aue)  Bave + Dave  (Average Mode) (4.3.4)

Theorder of G, () is ‘np’, where ‘n’ is the number of states in each model. Since
the average system order can be quite large, the chosen nominal model will be G (s)

developed in the preceding section.

To address the stability robustness issue, the nomina compensator will be used with

the actual feedback loop, where the elbow joint angle 6 is changing with time as

shown in Figure 4.3.2.

G(6,9 G (9) v

u(s) -1 -1
C()(sl - A 6)) B(6)—m]| C.(sI-A,) B, -

Figure 4.3.2 Fixed Robust Compensator with Large Plant Variations

Structured and Unstructured Uncertainty

Since the late seventies, the words structured uncertainty and unstructured uncertainty
have been used to distinguish between two types of plant uncertainty and model errors.

A brief overview of these two types of uncertaintiesis given below.

Plant structured uncertainty refers to model errors caused by the assumption that the
actual plant is linear, time-invariant and with the same order as the nomina plant
model, except that the numerical values of the matrices that define the state space

representation are different. Additiona information may be available with respect to the
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range of the numerical values. Such structured uncertainty gives rise to mode errors
that leave the number of poles and zeroes invariant, but they influence the location of

the actual poles and zeroes (and their directions) as compared to the nominal values.

Unstructured uncertainty is quite different. Assume that the actua plant is still linear
and time-variant. However, plead tota ignorance regarding the order of the plant and
its phase characteristics. In particular, the key assumption of unstructured uncertainty
is that model errors are characterized by +180° phase uncertainty. Such complete
phase uncertainty due to modeling errors, can “flip” the sign of the nominal feedback

loop(s) and perhaps lead to instability.

Modeling errors due to unstructured uncertainty cannot be captured by a finite
dimensional state space model. Thus one can adopt an input-output model and use

frequency domain methods to “bound” the size of the model error.

The design philosophy for meeting the stability-robustness specification hinges on the
assumption that the maximum bound for all elbow joint angles, or plant perturbation, is

known. The maximum bound satisfies the following equation:

Ea(jw)= max (G(6,jw)-Gy(jw) 06 D[0°,90°] (4.3.5)
i=1l.p

Using the phase information from the additive uncertainty vector E,(jw) enables the

use of structured uncertainty stability robustness properties, which are less conservative
than unstructured uncertainty. In unstructured uncertainty the phase would have been

completely arbitrary.
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With the definition above, E,(jw) reflects the largest variation between any of the ‘p’

plant models and the design model G,,(jw).

The control block diagram representing the additive model error is shown below.

Ea(s)

G.(5)
u(s) =) ) y(s)
— Ca(sl = An) By G (sl=A) B -

Figure 4.3.3 Additive Mode Errors
Return Difference Transfer Function Matrix

Since frequency-domain representation are used, and the concern is about stability, one
must be sure that the transfer functions do not hide any right-haf plane pole-zero

cancellations, thus the standing assumption ismade that G, (S)G,,(s) does not have any
right half plane pole-zero cancellations. Definethe loop transfer function matrix T, (S)
by Tn(s) = G.(9)[Gn(s) + Ea(s)]. The following relationship holds for the system of

Figure 4.3.3.
y(s) = C(s)u(s) (4.3.6)

where C(s) isthe closed-loop transfer matrix given by

C®) =Ta((1 +Ta(9) " = (1 +To(9) " Tn(s) (4.3.7)

and | +T(s) isthe return difference transfer function matrix. The magnitude of the

return difference matrix || +Tn(jw)| represents the distance of the nomina Nyquist
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locus, T,(jw), to the “critical point”, -1. The basic idea of the stability-robustness
tests relies on the following interpretation: If a each frequency, the “size’ of the
modeling error E,(jw) is less than |I +Tn(jw)|, then the number of encirclements

cannot change and closed-loop stability isretained. More specificaly, if

gL =1 < gl +G(jw)Gy(jw) + Go(jw)Es(jw)] , DwO[0,e] (4.3.8)
where
L= Diag[kneJ‘p”] (4.3.9)

then the actual feedback loop is closed-loop stable. Thusthe stability-robustness test is
a sufficient condition for the stability of the feedback system in the presence of the

structured modeling errors.

15k \i E(L‘l—I):\/(1—1/kn)2+2(1—cosqqq)/kn
g : we Margin, ¢ ,deg
Maximum 0° T
Singular 1 e —
3 Value > P /Hj_;?z;
a( L~ ) w0°
05/ o5 1

1 20°
10 °

! L
| /
/
\

o

5 10 15
Gain Margin k,, dB
Figure 4.3.4 Universa Diagram for Gain-Phase Margin Evauation

Equation 4.3.8 can be visualized by examining the diagram for gain-phase margin

evaluation. Figure 4.3.4 can be used to determine the gain margins for a particular

88



phase margin for simultaneous changes of both gain and phase in al input channels

(Mukhopadhyay, 1982).

4.4 Gain Scheduled Compensator

The nominal arm configuration is now perturbed about the nomina “set point”. By
alowing the controller gain vector C, to be afree parameter, the quadratic performance

cost function is evaluated over the surface of the gain space. The minimum of this
surface isfound. This process is continued for various arm configurations. Once the
‘optima’ gains and the respective surfaces are known, questions such as, “are the
‘optima’ gains simply connected?’ can be explored. If such gains are smply
connected, an ‘optimal’ polynomia expression of the gain versus the robot joint angle
could be derived using optimization approaches. If the gains are not simply connected,

alook-up table will be used to adjust the output gain vector.

By adjusting the elbow joint angle, the system matrices are a function of 8. The new
state estimator is now a dynamic compensator which will remain fixed. The
compensator state gain C. will vary with the parameter 6 to minimize some

performance function. The gain scheduled compensator is shown in Figure 4.4.1

U, u_ | x=A6)x+B(6)u 4
y=C(6) x+D(O)u

b4

CO)|— =Az+B.y =

/

update

Figure 4.4.1 Gain Scheduled Compensator
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The plant dynamic equations for the time varying systemis u, =0, and u=u, = u,:
x = A(6)x+ B(O)u
(9) ©) (4.4.2)
y=C(8)x + D(8)u
The state compensator feedback gain will be allowed to change with 6.
A
2= Azt By (4.4.2)
u==C.(0)z

The state equations for zero exogenous inputs are:
x=A(B)x + B(6)C.(8)z

z=(A.C(6) + B.D(6)C.(8))z+ B.C(8)x
y=C(6)x + D(6)u (4.4.3)
= C(8)x + D(8)C,(6)z

Written in block matrix form:

o 0 A() B(6)C.(6)  [IxXO
#H Ha.C(6) A +B.D(6)C.(6)
VO [€(6) D(6)C.(6) XD
HH Ho  c(® A

(4.4.4)

The Linear Quadratic Regulator (LQR) cost function is given by

J= j[yTQy+ u’ Ru]dt (4.4.5)
0
inserting
T T T
u =z C.(6
(9) (4.4.6)
y' =x'C(6)" +2'C.(6)" D(6)"
into (4.4.5), yields:

i }%XTC(G)T +2'C.(0)T D(e)T}Q{C(e)x +D(6)C,(6)7}

(4.4.7)
0+2'C.(8)" RC,(0)z

Mg
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rewriting,

B(TC(B)TQC(G)X +x1C(6)" QD(6)C,(6)z B
J= ImrzTc (8)"D(8)T QC(0)x + 2" C,(6)" D(8) ' QD(H)C, (G)ZEdjt (4.4.8)
ngc (6)" RC,(6)z g

Which can be written in matrix block form

J= °°[XT ZT]D C(6)' QC(6) C(6)" QD(6)C,(6) O,
-] (O DO)TQC(E) C(6) (D(6) QD(6) + RIC,(B)EEE
(4.4.9)
Let X be an augmented vector of the plant state and compensator state
% = gﬁ (4.4.10)
Then the cost can be rewritten as
3= [X'Q(E)xdk (4.4.11)
0
where
_ 0 co'Qco) C(6)" QD()C,(6) §
CO=% @O ece) (o) (D) ad®) + RicO)F (4412
and the augmented state vector satisfies the equation
%= AB)X (4.4.13)
where
_ A6 B(6)C.(6
@)=L (0) (0)C.(6) O (4.4.1)

B.C(6) A +B.D(6)C(O)]
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If A(6) isstable, there exist a symmetric positive definite matrix P which satisfies the

Lyapunov equation:

A(6)TP(6)+P(6)A(6) +Q(6) =0
The cost can be rewritten as

J= —} X" (A(6)T P(6) + P(8)A(6))xdt
0

but

[ P(e)x] P(8)x + X"P(O)X

using
X = A(B)X
yields
%[xTﬁ(e)x] =x"T(A(6)TP(6) + P(6)A(6))%
The cost iis rewritten using (4.4.19) and (4.4.16)
J= —I%[)‘(Tﬁ(e)i]dt
= —[>—<T§(9)>—<]°°
= ~(%aP(6)%., = %g P(6)%,)
If A(6) isstablethen X, =0, and the cost is
J=%JP(8)%, (4.4.21)

The objective of the gain schedule control law isto find J. such that

=minJ
C.(0)
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(4.4.17)

(4.4.18)

(4.4.19)

(4.4.20)
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This minimum cost can be easily determined for each value of 6. By plotting J as a

function of Ceq(6) and Ccx(6) and minimizing the variance of the error between J
and a polynomial function of 8, a polynomia for the optimum gain scheduled control
law can be found. In terms of rea time control this analysis could be performed off
line to reduce red time computational burden of the onboard computers. This gain
scheduled compensator or the following adaptive frequency domain compensator were
not further developed in this thesis due to the computational burden of the method.
However an interesting adaptive control scheme will result if sufficient onboard

computation is available.

Adaptive Frequency Domain Compensator

A new adaptive control design method which does not require:

The plant Strictly Positive Real (SPR) property;
An adaptive realization of the plant;

The design of a performance (or reference) model;

isdescribed in this section. ThisMIMO design method updates the compensator gains
directly based on new information gained from a measurement of Frequency Response
Function (FRF) from avallable sensor data. Using gradient based optimization
techniques, this method updates the compensator gains based on performance and
stability objectives when the plant is dowly time varying or if the plant has pole, zero,
or influence coefficient uncertainties or perturbations which are represented in the error
bars of a multiple FRF measurement. The performance objective is based on a linear

combination of a frequency weighted Linear Quadratic Regulator (LQR), combined
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with a stability criterion derived from the minimum singular value of the return

difference matrix.

The Frequency domain Performance/Stability optimization for adaptive control method
is smilar to a digital Robust Control Law Synthesis using constrained optimization
(Mukhopadhyay, 1989). With Mukhopadhyay’s method, a linear quadratic Gaussian
cost function is minimized by updating the free parameters of the control law, while
satisfying a set of constraints on the design loads, responses, and stability margins.
Analytica expressions for gradients of the cost function and the constraints, with
respect to the digital control law design variables, are used to facilitate numerica
convergence. One difficulty with this technique is that the steady-state mean square
responses are computed by solving the steady-state condition of the discrete Lyapunov
function. Thus this Lyapunov function cannot be solved if the closed loop system is
unstable. The agorithm in its present form would fail to attenuate appropriate loop
gains when a new plant realization renders an unstable closed loop system. Thus the
controller may not adapt to a time varying linear plant. This method also requires
knowledge of the expected value of the plant and output discrete covariance matrices.
Measurement noise covariance's are easly derived from experimental data, while the
plant noise covariance determination is considerably less tractable. The method aso

requires arealization of the plant system matrices.

The frequency domain performance/stability optimization method proposed herein does
not require the solution of the steady-state condition of the discrete Lyapunov function.
Hence the optimization space may resolve unstable closed loop systems by attenuation
of the respective loops while minimizing the performance indices. The MIMO FRF
plots are also a more accurate indicator of the plant response than are redlizations from

the FRF. A distinctive property of this method is that no plant redlization is required
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for the update of control parameters. The method is applicable to non-minimum phase

systems as well as when plant dimension is of larger order than the controller.

A nominal compensator isfirst designed as discussed in Section 4.2. While the system

is under control, a closed loop Frequency Response Function (FRF) G; (jw) can be
determined. It can aso be derived from open loop data with knowledge of the nomina

compensator K(jw) by using (4.4.23).

Gy (6, jw) = (1+ Gop (6, jaw)K (6, Jw))_lGop(B, jw) (4.4.23)
where
K(6,jw) = C(6, jw)(jwl - A)'B; (4.4.24)

Notice the compensator A. and B, matrices are constant. The FRF of the control
input uy(jw)is also available. However, it is important to note that since these

equations are in the frequency domain, the input used during the data gathering
experiment is periodic. In addition, one has to assume that diasing is appropriately
handled. Thetwo FRF's can be used to determine the cost of the closed loop system
with a known nominal compensator K(6,jw). This closed loop cost is thus

determined using open or closed loop data.

3(6) = [tr[ G (8,1w)QG (6,160) + U] (6, j0) Rug (6 jeo)]do (4.4.25)

Since an observer is not utilized in the controller, the compensator represents a
generalized dynamic feedback controller. By allowing only the gain matrix C.(6, jw)
to change, the cost is minimized using open or closed loop data. If this were an
observer/controller system there would be one global minimizing controller which

would simultaneoudy guarantee the well known LQR robustness properties.
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However, minimizing the above integral does not guarantee robust closed loop system
behavior. Thus while minimizing the above integral, an additional cost or constraint,

which reflects the stability of the return difference matrix is added.

J(6) = jtr[G;T(e,j@QG; (6, jw) + U (6, jw)Ruy (6, jw) |do

(4.4.26)
+ksF(of 1+ K (6, j0)Gop (6, i )] n)
where kg = gain of stability cost and
(= 31 ]! +K(6.i)Cep(8,1)] when (s 03 (4.4.27

0 when Q(D]>’75

and ¢ isthe minimum experimental singular value. Assuming the closed-loop system

is stable, the robustness of the nominal system at the plant input can be examined by
computing Q‘[l + K(6, ja))Gop(Q,jw)] asafunction of frequency (s= jw) and using
the guaranteed stability criterion

g(Lt-1< g{| +K(8,(0)Gop(6, jw)] (4.4.28)

at al frequencies. Thematrix L isadiagona gain and phase change matrix at the input

of the plant as shown in Figure 4.4.2, and & isthe maximum singular vaue.

L= Diag[kne”n] (4.4.29)

Gop(6,9) K(6,s)

L (3 c(o) s -A) B ™ C(O)(s - A) "B

Figure 4.4.2 Diagona Gain and Phase Change Matrix at Plant Input
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The value of n is chosen based on desired gain and phase perturbation robustness
properties. The matrix L is the identity matrix for the nomina system and it can be

shown that

T(L 1) =(1-1/k,)? + 2(1- cosg) / k, (4.4.30)
Equation (4.4.30) is plotted in Figure 4.3.4 (Newsom, 1983). By examining the
universal diagram for gain-phase margin, the designer chooses the desired stability
properties and the corresponding value of 7. This figure can be used to determine the
gain margins for a particular phase margin for simultaneous changes of both gain and
phase in dl input channels (Mukhopadhyay, 1982). For example, if a smultaneous
gain and phase perturbation robustness of (-3,6) dB and +20° phase margin were
desired, then avalueof n = 0.4 would be utilized. Since the minimum singular value
is determined directly from test data as opposed to redizations of the data, it is a very

accurate indicator of the actual gain and phase margins which exist in the loop.

4.5 Spline Varying Optimal (SVO) Compensator

The plant dynamic equations for the time varying system s

x=A(0)x + B(6)u

y = C(8)x+ D(6)u (4.5.1)

The equivalent plant dynamics can be described by an N-th order transfer function

G(g) = PUOIST+ B(6)S™ ... +By (6)

Sn + al(e)sn—l_i_.“_'_an(e) (452)

by using the change of state matrix
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C
CA

AT

Ty = (4.5.3)

CooOoo
COoood

where the new state variable and state matrices are given by X, = ToeX,
A —T1-1 5 —1-lp A —

Ao = TobATops Bop = TopB , Cop = CTy

The time varying observer can be described in an observable canonical state-space
equation by:

Lo = Ao (8) X + Bop(B)u+ K, (I - Y)

§ = CopZap + Dop(B)u (4.5.4)

where the observer state matrix, influence matrix and output matrices are given by

o O 1 0 0 O
0 il

W@-D 0 0 o o 0

Ao (6) = g : S (4.5.5)
U : W
E’an(e) an—l(e) _an—Z(e) ‘0’1(9)5
B B.(6) B

. B2(6) - a1 (6)By(6)

o) =01 []

o) G5,(0)- (0)8(6) - o 0)3:(6) + 2(O)B(0)] (459)

U 0
COb = [1 0 0]

The optimal control can be implemented by full-state feedback and is given by

u =C,(0)X(t) (4.5.7)

The control gain matrix C.(6) isgiven by

Ce(6) = ~R By (6) P(6) (4.5.8)
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Thematrix P(8) = P(6)" =0 iscomputed from the solution of the following algebraic

Riccati equation:
Pop(6)T P(6) + P(6) Ay () — P(6) By (O) R B (6) T P(6) + Q=0 (4.5.9)
The SV O compensator block diagram is shown in Figure 4.5.1. An example problem

will be shown in Section 4.6 which will demonstrate that the dependence on 6 is

captured by the cubic spline function.

u

wlk
V<

C(6)

() > B (6)
A

A(6)

.4

Byn(6)
b4
ol 7 ?
/ y
4 4_g>+

Cor | s le—(O= Kyly-9)
P 4 '
- g
A (0)

/

Figure 4.5.1 SVO Compensator Block Diagram

99



4.6 Performance Comparison

This section evauates the various control law strategies based on a consistent cost
function. The compensators are applied to the two link model and the open and closed
loop performance for a wide variety of arm orientations are compared. Table 2.3.1
shows the non dimensional parameters used for the two link model. Ten modes were
included in the truth model. Table 2.5.1 indicates the open loop eigenvalues as a
function of theta. The infinity norm of the Bode response as a function of mode

number and thetais shown in Figure 2.6.1.

Fixed Dynamic Compensator Results

The fixed dynamic compensator design results show that the ‘optima’ nominal arm
orientation for the fixed compensator wasat 6, =50° . Below is the cost as computed

in Section 4.2 as a function of theta, where

J(8) = %3 P(6)% (4.6.1)
where

_ . _Oc)'Qces) c(6)'Qp@g)c, O

Q)= RIp@) e ol (@) end) + RiE (462)
and the augmented state vector satisfies the equation

X = A(6)X (4.6.3)
where

A6) = 0A(6) B(6)C. O (4.6.4)

B.C(6) A +BD(6)C.H
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and the symmetric positive definite matrix P satisfies the Lyapunov equation:

A(8)"P(8)+P(6)A(8)+Q(6)=0 (4.6.5)

Each initial state in X, was set equal to one for al performance comparisons. The
Output weighting gain was Q = 0.1, the input weight was R=0.001. The process
noise and measurement noise covariance' swere Q, = 0.1 and R, = 0.1 respectively for

al performance comparisons. The fixed compensator performed well for most am

orientations (Figure 4.6.1).

12

1L — Open Loop

0.8

0.6

Cost J(8)

04+

Fixed Compensator
0.2 \& /

0

0 10 20 30 40 5 60 70 8 90

Theta
Figure 4.6.1 Open and Closed Loop Cost Comparison as a Function of Theta - Fixed
Compensator

Although there were no instabilities induced by the fixed dynamic controller, the gain
and phase margins were small. The minimum singular value of the return difference

matrix evaluated over the workspace for the fixed controller reached
oI +Gy(jw)G(8;, jw)] =0.16, Dw[0,], 06 D[O°,90°] (4.6.6)

indicating that there was only a 10° phase margin (See Figure 4.3.4). This low phase

margin occurred for the 8 =90° arm orientation. The presence of no instabilities

101



reflects the fact that thereis significant modal frequency separation between successive

modes, and significant attenuation of the infinity norm of the residual modes.

The total cost is found by caculating the area under the above curves for the fixed

dynamic compensator.

10

T;(G, = Fixed Compensator) = J(6;) =1268 (4.6.7)
i=0

The 10 values in the summation correspond to values of theta in increments of 10°

from [0",90"]. For comparison, the open loop total cost is evaluated by setting the

fixed compensator to zero. Thus

10
T;(G.=0)= ZJ(Gi):9.477 (4.6.8)
i=0

Fixed Robust Dynamic Compensator results

The fixed robust compensator results show an improved performance over al arm

orientations. The mandated stability condtraint was a 40° phase margin, or

E(L'1 —1)=0.75. Shown in Figure 4.6.2 is the Bode response of the nomina plant

model G,,(s) at 50°.

The maximum bound on the additive model error over the entire workspace was

calculated from
Eu(jw)= max (G(6;,jw)-Gy(jw)) DQD[O°,90°] (4.6.9)
i=1.10

and is shown in the frequency domain in Figure 4.6.3.
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Figure 4.6.2 Bode Response of Nominal Plant Model G, (s) at 50°.
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Figure 4.6.3 Maximum Bound on the Additive Model Error E,(jw)

Using the optimization toolsin Matlab a constraint of

of 1 + Ge(jw)Gy(j) + G (jw)Eq(jw)] 2 0.75
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was used to modify the return difference transfer function. The resultant fixed robust

controller performance is depicted in Figure 4.6.4.

12—
T Open Loop
1 - -
0.8 7
S
~ 06" . ]
% Fixed Robust Compensator
@)
U O 4 - /
0.2 ———-————_ 1
O L L L L L L L L
0 10 20 30 40 50 60 70 80 90
Theta
Figure 4.6.4 Open and Closed Loop Cost Comparison as a Function of Theta - Fixed
Robust Compensator
10
T;(Gc = Robust  Compensator) = J(6) = 3.022 (4.6.11)
i=0

Spline Varying Optimal Compensator Results

A

The observer A)b(e), éob(e), Cop, and C.(68) matrices were evaluated as afunction

of theta. These parameters were used in the observer equations to derive the state space
matrices. Figures 4.6.5 and 4.6.6 show the non zero A,,(6) coefficients a;(6) and
a,(6) in the observer dynamic equations.

Zap = Aop () Zep + Bop(B)U+ K (6)(9 - y)

. “ (4.6.12)
y= Cob)A(ob + Dgp (O)u
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where

A

00 1 g
MolO=0o0) -ay(6)F (4613)

Figures 4.6.7 and 4.6.8 show the By, (6) coefficients B,(8) and B,(6)., where

- O Bi(6)

]
%0(0)= . (6) - ay(6)31(6) (4614

Since the observer is the observer canonical form, the non zero elements of the éob

vector issimply one.

Cop =[1 0] (4.6.15)

Figure 4.6.9 and 4.6.10 show Cc(8) and Cc(8) , which were found by solving the

algebraic Riccati equation for each value of theta.

C.(8) =-R By (8)" P(6) (4.6.16)

Thematrix P(6) = P(6)" =0 iscomputed from the solution of the following agebraic

Riccati equation:

Au(8)T P(8) + P(8) Ay (6) = P(68) By (O)R 'Byp (6) T P(6) + Q=0 (4.6.17)

The observer gain K,(6) and K,(6) were found using the process noise and

measurement noise covariance' swhere Q,, =0.1and R, =0.1. Table 4.6.1 shows the

numerical Markov parameters and controller and observer gain for 10 successive values

of thetastarting at 8,=0.

For each graph 4.6.6 through 4.6.12, the observer and optimal gain were plotted as a

function of 8,. Each of the curves were then fitted to athird order polynomial.
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Table 4.6.1
SVO Compensator Parameters
Theta
(Degrees) a4(6) a,(6) Bi(6) B.(6)

0 1.6356e-02 0.6688 -8.3579e-06 | -2.0611e+01
10 1.6412e-02 0.6734 -8.4277e-06 | -2.0787e+01
20 1.6583e-02 0.6875 -8.6416e-06 | -2.1328e+01
30 1.6874e-02 0.7118 -9.0135e-06 | -2.2273e+01
40 1.7294e-02 0.7477 -9.5688e-06 | -2.3690e+01
50 1.7857e-02 0.7972 -1.0347e-05 | -2.5694e+01
60 1.8582e-02 0.8633 -1.1406e-05 | -2.8459e+01
70 1.9495e-02 0.9501 -1.2829e-05 | -3.2253e+01
80 2.0627e-02 1.0637 -1.4728e-05 | -3.7486e+01
90 2.2020e-02 1.2122 -1.7240e-05 | -4.4799e+01

Table 4.6.1 Continued
SVO Compensator Parameters
Theta
(Degrees) Ce1(6) Ce2(6) Ky1(6) Ky2(6)

0 -3.0246e-01 | -1.7053e-01 | 1.4220e+00 | 5.1111e-01
10 -3.0251e-01 | -1.6982e-01 | 1.4206e+00 | 5.0900e-01
20 -3.0265e-01 | -1.6769e-01 | 1.4161e+00 | 5.0267e-01
30 -3.0290e-01 | -1.6417e-01 | 1.4085e+00 | 4.9200e-01
40 -3.0326e-01 | -1.5928e-01 | 1.3978e+00 | 4.7686e-01
50 -3.0375e-01 | -1.5307e-01 | 1.3835e+00 | 4.5709e-01
60 -3.0438e-01 | -1.4560e-01 | 1.3657e+00 | 4.3256e-01
70 -3.0517e-01 | -1.3696e-01 | 1.3440e+00 | 4.0321e-01
80 -3.0616e-01 | -1.2726e-01 | 1.3185e+00 | 3.6920e-01
90 -3.0737e-01 | -1.1665e-01 | 1.2892e+00 | 3.3102e-01

It should be noted that the third order polynomial is an approximation of the data. The
actud optima gain function will be of a higher order, at least sixth order in theta,

although athird order polynomial isa very good approximation. Thus SVO controller
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can be implemented easily on a computer in red time. The respective third order

polynomial coefficients are shown in each graph.

0.023
0.022 4 ay(6) =1635(10) 2 +3.94(10) °6
1 -7 12 -9 53
0021 ] +3.54(10)"' 6% +3.352(10) Y6
~ 0.020
2 ]
S 0.019
0.018
0.017
0.016
0 100
Theta
Figure 4.6.5 SVO Compensator Parameter a;(6)
1.3
121 a,(8)=0.667+7.371(10) 8
: +855510) ° 62 +5589(10) ' 6°
>
<
S
100

0
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Figure 4.6.6 SVO Compensator Parameter a,(6)
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Figure 4.6.13 shows the open and closed loop (SVO) cost versus theta. There is an

improvement of 20:1 over the open loop manipulator along the range of motion.

1.2

— Open Loop

08 7

Cost X8)

02+ '/ SVO Compensator i

0 iO 26 ?;0 40 56 60 7b 86 90
Theta
Figure 4.6.13 Open and Closed Loop Cost Comparison as a Function of Theta- SVO
Compensator

A cost comparison of the controllers studied above is summarized in Table 4.6.2. Al
of the compensators improved the open loop performance over the workspace. For
comparison purposes, the total cost of the open and closed loop systems is computed
by integrating the area under the curves above. These results for the open loop, fixed
robust compensator, fixed compensator SVO compensator are plotted in Figure
4.6.14. Figure 4.6.14 indicates the improvement of the SVO controller over the fixed
gain and fixed robust controller. It is important to note that the fixed gain controller
remains stable over awide variety of elbow pitch arm angles, although its performance
is sgnificantly worse than that of the SVO controller. The overall improvement in
performance is 7:1 for the fixed gain compensator, 3:1 for the fixed robust

compensator, and 20:1 for the SVO compensator. Although the stability margin for the

fixed gain controller wasrelatively low (10° phase margin), its performance was about
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Table 4.6.2
Cost Comparisons
Open Loop Closed Loop
Theta Cost Cost Cost
(Degrees) Cost Fixed Gain | Fixed Robust SVO

0 1.153 0.217 0.420 0.0512

10 1.144 0.185 0.401 0.0510

20 1.118 0.128 0.346 0.0505

30 1.077 0.0792 0.253 0.0497

40 1.021 0.0567 0.198 0.0485

50 0.954 0.0471 0.182 0.0471

60 0.878 0.0585 0.194 0.0454

70 0.795 0.0852 0.235 0.0435

80 0.711 0.146 0.326 0.0413

90 0.626 0.265 0.467 0.0391

Total Cost
10
yae) | 9477 1.268 3.022 0.467
i=0
10t ¢ 3
I / Open Loop ]
g? 100  ;
u - Robust Fixed C :
o = obust Fixed Compensator g
g - / P ]
% 101, \Qed Compensator ]
© - B 5
i \ SVO Compensator |
102
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Figure 4.6.14 Open and Closed Loop Cost Comparison as a Function of Theta
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o
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two times better than the fixed robust compensator (40° phase margin). Thus, by
increasing the robustness of the closed loop system, the fixed robust compensator

sacrificed on performance.

4.7 Summary

This chapter has developed and compared the theoreticadl and numerica results for
severa control strategies of atime varying flexible manipulator. The consistent cost
functions for evaluation of the various controllers on the time varying system have been
derived. An example problem was used to evaluate the performance of the various
controllersfor the time varying system. It was determined that a fixed robust controller
can remain stable over the workspace limits, athough its performance is sacrificed a
the expense of stability margins. A novel SVO controller has been developed. There
are severa advantages of the SVO controller over traditional gain scheduling
controllers. The four advantages of using the SVO controller where the spline function

approximates the system model, observer, and controller gain are:

(1) The spline function approximation is smply connected, thus the SVO
controller is more continuous than traditional gain scheduled controllers
when implemented on atime varying plant.

(2) TheSVO controller is easier for real time implementations in storage and
computational effort, when compared to traditiona gain scheduled
compensators.

(3) Where system identification is required, the spline function requires fewer

experiments. Namely four experiments are required to identify the four
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polynomias in each of the non zero elements in the controller (See
Chapter 3).

(4) Startup transients arereduced. When the estimator is determining the state
a dl times during the maneuver, initial estimator transients can be

diminated.

The SVO controller outperformed the fixed gain and fixed robust controller as
determined by the consistent cost function. The SVO controller developed in this
section isthefirst simply connected time varying compensator shown in the literature.
As discussed in the previous chapter on system identification, the fundamental mode
Markov parameters which are unique, satisfy a third order approximation, or spline
function, as afunction of the elbow joint angle (6,). In this chapter it was shown that
in addition to the Markov parameters satisfying the spline function, both the observer
gain and the time varying regulator gains satisfy this spline function approximation.
The results of this observation allow the myriad of free parameters in a time varying
optimal controller to be reduced to afundamental set of time varying optimal parameters
which are smply connected. With the SV O controller there is an improvement of 20:1

over the open loop manipulator dynamics along the range of motion.
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CHAPTER 5

ACTIVE VIBRATION DAMPING OF THE SPACE SHUTTLE REMOTE
MANIPULATOR SYSTEM

In this chapter the various control strategies described in Chapter 4 are applied to a high
fidelity smulation code of the Shuttle Remote Manipulator System (SRMS). The code,
which is used routinely for predicting arm dynamic motions for on-orbit RMS
operations, was obtained from Charles Stark Draper Laboratory (CSDL) for this
purpose. The smulation code includes models of the RMS structural dynamics, joint
servos, motors, gearboxes, and the software modules loaded in the Shuttle computers
for RMS control (Metzinger, 1988). To demonstrate that the Draper RMS simulation is
avalid representation of the flight article, 22 specific maneuvers were performed in
flight and reproduced via DRS simulation (Gray, 1985). The comparisons show
excellent agreement between DRS and flight data. Various sensor/actuator pairs are
evaluated including collocated control with the shoulder and elbow joints. For both
joints, feedback of the tachometer measurement initialy results in a small increase in
RMS damping. However, feedback of the acceleration measurement to drive the
shoulder joint show a large increase in damping. Linear models are derived for four

arm orientations and are used to derive SV O controller.

The approach to the RM S active damping feasibility study isthefollowing. First, a set
of payloads and arm configuration combinations consistent with the types of payloads
expected during Space Station Freedom assembly is defined. Second, RMS dynamics

and operationa characteristics were examined using the nonlinear Draper RMS
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Simulator (DRS) code. The determination of active damping augmentation feasibility
involved the design and ssimulation of candidate damping augmentation control laws.
For this purpose, system identification methods were employed on output data from the
DRS to identify time varying nonlinear models which closely match the DRS response.
With the nonlinear control design models, various active control law design concepts
described in Chapter 4 were evaluated, as were the requirements for feedback sensors
to measure arm motions. Thefinal step was the simulation of the SVO control law in a
modified version of the DRS to determine the effects of system kinetic and kinematic

nonlinearities and computer time delays.

5.1 Shuttle Remote Manipulator System

Figure 5.1.1 illustrates the elements of the Space Shuttle RMS (JSC, 1988). The
system is a six-joint telerobotic arm controlled from a panel located on the aft flight
deck of the Space Shuttle. These six joints are directly analogous to the joints and
freedom of a human arm, defined as shoulder-yaw and pitch, elbow-pitch, and wrist-
pitch, yaw, and roll. An end effector for grappling payloads is mounted at the free end
of the arm. From the control panel and trandational and rotational hand controllers,
commands to move the arm are processed by the Shuttle computers and an interface
unit to provide electrical signalsto drive the joint servo motors. The actua joint servo
commands that are generated depend on the selected operational mode, which can be
either direct drive, single joint mode, one of four manua augmented modes, or an
automatic control mode. The manua augmented mode is normally used for payload
operations on-orbit, although the single joint mode is used for RMS stowing and to
avoid joint singularities. Joint angle position and motor shaft rate a each joint are

measured by an encoder and tachometer, respectively.
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Figure 5.1.1 Space Shuttle Remote Manipulator System (RMS)

Fixed slew rates mandated by safety operational procedures

In dl reconfigurable structures there is an upper bound slew rate demanded by safety
operational procedures. This dew rate is best described as a fixed velocity and
acceleration rate of the servos driving the structurd joints. The velocity constraint
manifestsitself asafinite rate at which the arm or tip can be positioned. This constraint

ensures that the structure can stop within an operational envelope to prohibit acollision.

Thefixed acceleration upper limit slew rate ensures that stress loads in the mechanical

links do not exceed mandated safety limits. It turns out that the acceleration slew rate,
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hereafter referred to as the slew rate, affects the spectrum of the vibratory energy

imparted to the electromechanica structure.

Without an upper bound slew rate constraint, a step input imparts energy into the
structure in abroad frequency band. With the fixed slew rate constraint, the input has a
finite rate at which the servo can accelerate. Table 5.1 indicates the fixed slew rate
limits for the SRMS (Ravindran, 1982). These limits were mandated to provide the
ability to stop from maximum speed within 0.6 meters under dl loading conditions.
The fixed dlew rate serves to attenuate the high frequency response, especialy for

heavier payloads.

Table5.1.1
Slew Rate Limits of SRMS
Load Rate Limits
m/Sec Deg/Sec
Unloaded 0.6 4.76
Loaded 0.06 0.476
(15,000 Kg.)
Loaded 0.03 0.238
(30,000 Kg.)

Four RMS configurations were adopted for the system identification study. These
configurations are shown in Figure 5.1.2 - 5.1.5 with the Shuttle PAllet Satellite
(SPAYS) free-flyer spacecraft as an attached payload. The SPAS payload was used for
the dynamic response studies. Depicted in the plots are the RMS configurations for
various values of the elbow joint angle, with the SPAS attached payload used on the
STS-07 Shuttle mission.
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The time response data shown in Figure 5.1.6 are typical of the kind of RMS motions
encountered during normal arm maneuvers, as predicted by the DRS. The plots depict
free responses following a 10-second single joint rotation command to the shoulder-
yaw joint, with the other joint positions maintained by the RMS position-hold function.
Shown arethe lateral displacements of the free end of the arm, the shoulder-yaw joint
angle encoder response, and the shoulder-yaw joint rate derived from the motor shaft
tachometer. After the command to the RMS is removed, the peak-to-peak free
oscillation at the tip of thearm is about 5 inches, while the actua measured joint angle
change during the same time is on the order of 0.1 degree. The discrete stepping of the
encoder response is due to word length limitations in the Shuttle computer, indicating
that the signal isat thelimit of useful resolution. The yaw joint rate is on the order of
3.0 degrees/second, and again has discrete stepping characteristics which limit the
useful resolution of data. These types of responses are an indication that the existing
RMS sensors may not be adequate for active damping augmentation purposes.
Because of this, the addition of another sensor in the form of a tip mounted
accelerometer was considered. The DRS smulation was used to predict the response
of an accelerometer package mounted near the SPAS payload. This smulated tip
acceleration measurement was used in feedback studiesto determine if additional sensor

hardware would be beneficial for active damping augmentation of the RMS.
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Figure 5.1.2 SRMS Configuration 6 = 0° Figure 5.1.3 SRMS Configuration 6 = 30°

Figure 5.1.4 SRMS Configuration 6 = 60° Figure 5.1.5 SRMS Configuration 0 = 90°
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Figure 5.1.6 Typica RMS response and sensor outputs - 6 = 30°.

Global Mode Shape Analysis

Knowledge of the globa mode shapes of the RMS was important in assessing the
feasbility of active damping augmentation of the RMS. Since mode shapes change
with arm geometry, the four configurations were studied. Appraisal was made of mode
shape observability and controllability from the available sensor and actuator suites.
Mode shape information was obtained using an eigenanalysis version of the DRS

(Gilbert, 1992).

Figure 5.1.7 shows an exaggerated representation of the second mode of the RMS .
The predicted frequency of this mode is 0.259 Hertz. This mode shape includes a

significant amount of upper and lower boom bending. Other RM'S modes include
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Figure 5.1.7 RMS Second Structural Mode Shape
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Figure 5.1.8 RMS Structural Mode Contributions
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considerable amounts of joint flexibility and/or orbiter sidewall flexibility, with little
boom bending contribution. In order to assess the relative contributions of each
generalized coordinate in the state equations, the magnitudes of the eigenvector
elements were plotted. Figure 5.1.8 is such a plot, showing the relative rotationa
contribution of states 1 through 13, and the relative displacement of states 14 through
17.

5.2 Collocated Versus Non-Collocated Control

The existing tachometer sensors were used to feed back joint rate command signals to
reduce arm tip motion following a pilot maneuver. Linear single-input, single-output
(SISO), state space models were developed to investigate the damping improvement
using local tachometer feedback to the respective joints and tip accelerometer feagibility
studies. State-space models were developed to investigate state feedback controllers.

The methods and results for both cases are presented below.

Linear SISO state-space models of the RMS were derived from DRS response data
using system identification methods outlined in Chapter 3. The data have been obtained
for single joint mode cases with the SPAS payload using the 3-second shoulder-yaw
joint rate command pulse as the input, and either the joint tachometer or linear
acceleration measurement at the tip of the arm as the output .  Assuming a nomina
model order of 8 states corresponding to 4 vibration modes, frequency, damping, and
influence coefficient parameters were selected to make the model best match the DRS
response datain aleast-squares sense. The SISO system identification results for the y
axis of the smulated tip accelerometer and the shoulder-yaw tachometer are shown in
Figure 5.2.1 and 5.2.2 respectively. The solid line represents the nonlinear DRS
predicted response and the dotted line corresponds to the identified linear model
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response. The identified linear models were used to evauate the effect of tachometer
and accelerometer feedback on system modes (i.e. damping) through ssimple gain loop-

closures.

Collocated and Non-Collocated Active Damping Results

Figures 5.2.3 and 5.2.4 show the RM S damping improvement as a function of a scaled

gain parameter for feeding back the shoulder-yaw and pitch tachometer measurements,

and tip acceleration measurement.
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Figure 5.2.3 Damping as a Function of Scaled Gain Using the Shoulder-Y aw Joint
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Figure 5.2.4 Damping as a Function of Scaled Gain Using the Shoulder-Pitch Joint

The initial damping values for zero gain for the two joints are different because the
joints excite and are able to control different structura modes. For both joints,
feedback of the tachometer measurement initialy results in a small increase in RMS
damping. Feedback of the acceleration measurement in both cases shows larger
increases in damping. Also shown in Figure 5.2.3 isthe result of tachometer feedback

as predicted by the nonlinear DRS code, validating the linear model tachometer results.

5.3 Spline Varying System Identification

The SISO studies above investigated direct output feedback using tachometer and
accelerometer measurements.  Spline varying optima  controllers were aso

investigated. These SVO controllers were based on nonlinear models of the RMS
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dynamics. The controller logic was implemented in the DRS nonlinear simulation so
that candidate control laws could be evaluated including the effects of nonlinear arm
dynamics, computer time delays, and exising RMS hedth and safety software

functions. The controllers are of the form

Xe(k+1) = A(0) % (k) + Bo(0)y(K)

(5.3.1)
u(k) = Cexc (k) + Dc(6)y(k)

where A.(6) is the compensator dynamics matrix, B.(8) is the control distribution
matrix, C. isthe observation matrix, D,(6) is the control feed-through matrix, x. is

the control state vector.

The spline varying observer models used for control law design were outlined in
Chapter 3. Four models were derived, corresponding to the four study positions of the
RMS in Figures 5.1.2 - 5.1.4. All four models had one input corresponding to the,
shoulder-pitch, and one output corresponding to thein axis acceleration at the tip of the
RMS. The shoulder joint was given a 3-second pulse rate command which was
intended to excite the low frequency modes. The response data was aggregated to
allow the agorithm to identify asingle model representing the response of the RMS to
theinput. The four models are second order, corresponding to fundamenta structurd

mode. Prior to the system identification, the DRS simulation acceleration data were

processed through afirst-order low-pass filter with a break frequency of 0.2 Hz.

Using the batch method, the observer Markov parameters were identified.

N

Y(6)=(Bo(6) Bi(6) G1(6) Ba(6) G(6) (5.3.2)

A summary of the identified observer Markov parameters for the four study

configurations are given in Table 5.3.1.
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Table5.3.1

|dentified Observer Markov Parameters

(Dg?eaeﬁ) Bo(6) B.(6) ay(6) B(0) a,(6)
0 2.2172e-17 | -1.7278e-02 1.9842 | 1.7210e-02 | -9.8794e-01
30 1.6627e-15 | -1.7018e-02 1.9839 | 1.6945e-02 | -9.8770e-01
60 -4.5981e-16 | -1.5960e-02 1.9827 | 1.5876e-02 | -9.8701e-01
90 1.5727e-15 | -1.3153e-02 1.9810 | 1.3062e-02 | -9.8599e-01

Notice that the identified [3’0(9) parameter is nearly zero as expected. Figures 5.3.1 -

5.3.4 show the identified observer Markov parameters plotted as a function of theta.

The spline function is used to interpol ate between the identified models and is shown in

each figure.
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Figure 5.3.1 SVO SRMS Compensator Parameter f3;(6)
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d,(8) =-0.9879 -8.3333(10) " 8+ 3.1667(10) ' 8 —7.4074(10) *° 6°
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Figure 5.3.4 SVO SRMS Compensator Parameter a,(6)

The time domain results of the system identification are shown in Figures 5.3.5 and
5.3.6 for anomina arm orientation. Shown are comparisons of the nonlinear DRS
simulation response data with one of the identified models. Figure 5.3.5 shows the
arm tip position following the 3-second pulse shoulder-pitch rate command (from O to 3
seconds in the plot). In this figure both the DRS nonlinear smulator (solid line) and
the identified linear model (dashed line) match so closdly that the curves overlap.
Figure 5.3.6 illustrates the tip acceleration for both the DRS nonlinear smulator (solid
line) and the identified linear model (dashed line) for the same 3-second pulse

command.
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5.4 Spline Varying Optimal Controller Design and Implementation in
RMS Software

The vibration suppression control law for each of the four configurations was
developed using the SVO control strategy of Section 4.5. Each set point design used
the frequency weighted Linear Quadratic Regulator (LQR) design method of Gupta
(1980). Prior to the frequency weighted LOQR regulator design, a digital high-pass
prefilter was added in seriesto the identified model to reject steady-state bias as would
be encountered in feeding back accelerometer measurements in a real system. This

filter had the digital form

T2+ T
N(z) =12 5.4.1
@= (5.4.)

where the constants 7, through 1, have the values 0.9707, -0.9707, 1, and -0.9414
respectively. The valuesfor thisfilter correspond to afirst order high pass filter with a
break frequency of 0.12 Hz. The identified model and prefilter are described by the

state-space model
%(k +1) = A(B)X(K) + B(O)u(k) (5.42)

y(k) = C(K) + D(B)u(k) h
where
. K(k)O
X(k) = B(z(k)H (5.4.3)
where

0 a,(0)0 - [B2(6) — a,(8)Bo(6)C

0) = 0) = 4.
AR aob B My - o6 (544
and
C=[0 1], and D(8) = By(6) (5.4.5)
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For control purposes, afixed gain regulator of the form
u(k) = —=C.(6)x(k) (5.4.6)

was used where u is the joint rate command signal. The state estimate X(k) was

obtained from an observer of theform

R(k +1) = A(G)K(K) + B(B)u(K) + K(y(k) — X(K)) (5.4.7)

wherey is the tip accelerometer measurement. The observer gains K;(6) and K, (6)

were found using (3.6.16) and (3.6.17).

Ky(6) = —a,(6) (5.4.8)
and
K2(6) = —a4(6) (5.4.9)

To obtain the optimal gain C,(6), the model with the prefilter was used in a frequency

weighted LQR design with aweighted cost function of the form

J(6) = i y(k)TQy(K) +u(k)" Ru(k) (5.4.10)
k=0

where Q is the output weight matrix, and R is the control weighting matrix. The
numerical values of Q and R were determined using an iterative design procedure on the
linear model which avoided actuator saturation. The final values used in the design are
Q=diag{0.002} and R=diag{0.02}. Using

y(k) = CX(K) + D(8)u(k) (5.4.11)

the performance index Equation (5.4.10) was recast:

J(6) = g KT (K)ICTQCK(K) +2%(k)T CTQD(8)u + uT(EST(e)QES(e) + R)u (5.4.12)
k=0
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The optimal feedback gain C,(6) which minimizesthe performanceindex J(6) for the

four values of @ in Equation (5.4.10) was found using Matlab software tools (Matlab,

1992).

Animplementation of the SVO controller in the Shuttle software was identified. This

strategy, illustrated in Figure 5.4.1, allows use of dl existing RMS health and safety

monitoring functions in an effort to smplify flight development work. The SVO

controller would be a software module which acts as a preprocessor to the existing
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Figure 5.4.1 Proposed SVO Controller Implementation in Shuttle Software
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RMS Command Output Processor (COP). It would be turned on and off using the
executive function of the existing software by a flag which would activate the controller
when RMS joint move commands are zeroed. Using motor rate and/or acceleration
feedback measurements, the controller would damp the free response of the arm to
some level a which time the norma position-hold function of the arm would be
activated. With thisimplementation, the active damping function of the controller could

be expanded to damp RM S motions following Shuttle thruster firings as well.

5.5 Active Damping Results

The SVO controller was evauated on the DRS nonlinear simulation. The tip position
following a 3-second shoulder-yaw pulse rate command is shown in Figure 5.5.1. The
top figure represents standard RM S operation and the bottom line represents actively
damped performance. The time required to damp the tip oscillation to =1 inch is
decreased by afactor of 3. The shoulder-pitch servo torque following the 3-second
shoulder-pitch pulse rate command is shown in Figure 5.5.2. In addition, after 90
seconds a Shuttle thruster roll doublet firing was simulated for 6 seconds. The upper
plot represents smulated standard RMS operation while the bottom plot represents
closed-loop performance with the SVO controller. In this time history the controller
has the effect of reducing the applied torque by a factor of 2. This provides the added
potential benefit of reducing the structural stress in the arm following routine

maneuvers involving either joint commands or Shuttle thruster firings.

135



A

Standard RMS Operation

f\ JAVAY A

} } } } }

Tip Position
(inches)
A

:‘, Active Damping (SVO Compensator)
|
|
|

Tip Position
(inches)

I/J“ku

20 40 60 80 100 120 140 160 180
Seconds

o

Figure 5.5.1 Tip Position Following 3-Second Pulse Command

600
400

200
A Mo
U sl \/V\/ T TN AV
-200

-400
-600
-800

/\ Standard RMS Operation

Shoulder Pitch
Servo Torque
(ft-Ibs)

o

Pulse Thruster Firings
Response . ™ Response

600
400
200

Active Damping (SVO Compensator)

AN
—

-200
-400
-600 |
-800

Shoulder Pitch
ServoTorque
(ft-Ibs)
o
|

Pulse Thruster Firings
Response |'> Response

20 40 60 80 100 120 140 160 180
Seconds

o

Figure 5.5.2 Shoulder Pitch Servo Torque Following 3-Second Pulse Command.
After 90 Seconds the Shuttle Thrusters are Fired for 6 Seconds

136



5.6 Summary

An andytica study to determine the feasibility of actively augmenting the damping of
the Shuttle remote manipulator system has been developed. System identification
studies were performed to evaluate collocated direct output feedback and non-collocated
dynamic spline varying controllers. The SVO controller and logic were evauated in a
nonlinear simulation which included the effects of kinetic and kinematic nonlinear arm
dynamics, computer time delays, and existing Shuttle hedth and safety software
functions. The collocated results indicate that for both shoulder yaw and pitch joints,
the feedback of the tachometer measurement results in a small increase in RMS
damping, with very small increases in proportional gain producing instabilities.
Feedback of the acceleration measurement in both cases resulted in much larger
increases in damping. SV O controllers were designed to enable improved performance
over a large workspace. Based on the results, active damping of the remote
manipulator system appears feasible using the existing joint actuators and Shuttle
computers and software. However, some additiona feedback sensors in the form of

accelerometers located at the tip of the arm are required.

The SVO controller developed for this system does not change or delay the trained
operator input command to move the arm, thus the “fed” of the arm has not been
altered. The SVO control system, when evaluated on the nonlinear simulation,
demonstrated significant improvement over the present arm performance: (1) Damping
leve is improved by afactor of 3; (2) Peak joint torque is reduced by a factor of 2

following Shuttle thruster firings.
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

The planar nonlinear dynamics of a reconfigurable eectromechanica structure and

controller have been studied in this thesis. Severa unique and unusua nonlinear

compensators have been designed, compared, and contrasted. The three main

contributions of thisthesis are the following:

D

(2)

3

A highly complex mathematical nonlinear reconfigurable system can be
controlled with an extremely low order SVO controller. The SVO
controller can accommodate the non-collocated actuator problem when

kinematic nonlinearities are present.

The Markov parameters are the key to reducing the highly heterogeneous
parameters in multiple fixed controllers to one simply connected SVO
controller. Understanding how the essentiad kernel of the mathematica
problem is changing with a measurable state (such as the elbow joint
angle) is fundamental to designing low order high performance SVO
controllers.  For example, the Markov parameters were found to be
extremely useful in reducing the manifold of changing parameters in the

mathematical system.

The derivation of the SVO controller can be developed using linear

identification techniques as opposed to high fiddity finite eement
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modeling. Thisis not to say that the high fidelity finite element based
simulation is not to be used or developed. If an accurate physical model is
not available or too cumbersome, identification can be accomplished for
the optimal controller via a recurrent network using data gathering
experiments of a minimum of four arm orientations. In addition, the
observer Markov parameters can be utilized to reduce the identified
parameters to a minima set of identified network weights. All of the
controller coefficients in the nonlinear optima controller can be very

closely approximated by athird order polynomial in the elbow joint angle
(6,).

Thereisadirect way of determining the system matrices A(6), B(6), C, and D(6)

without first computing the system Markov parameters by using the observer Markov

parameters in the spline varying observer canonical state space model form. In this

smilarity transformation, the time varying state space model is derived quickly for

control system design. There is no need for induction which unnecessarily increases

control design development time.

The four advantages in using the SVO controller where the spline function

approximates the system model, observer, and controller gain are listed below:

D

)

The spline function approximation is simply connected, thus the SVO
controller is more continuous than traditional gain scheduled controllers
when implemented on atime varying plant.

The SVO controller is easier for red time implementations in storage and
computational effort when compared to traditiona gain scheduled

compensators.
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(3) Where system identification is required, the spline function requires fewer
experiments. Namely four experiments are required to identify the four
polynomialsin each of the non zero elementsin the controller.

(4) Startuptransientsarereduced. When the estimator is determining the state
a dl times during the maneuver, initial estimator transients can be

aiminated.

In the process of developing the SVO controller, an understanding of the physics of a
two-link model of aflexible manipulator provided useful insights to the tenuous task of
developing a high performance nonlinear controller. When used alone, high fidelity
mathematical models obfuscate the control system designer while tackling the problem
of nonlinear kinematics. High fidelity models can however, accurately predict the
performance of complex systems such asthe SRMS (Gray, C., € al., 1985). While a
high fidelity smulator is useful to test and fine tune a low order controller prior to rea
time implementation, fundamental dynamics must be identified and utilized for low
order control system development. For example, it is shown that the use of collocated
actuator sensor pairs (on the high fidelity simulator) does not appreciably affect the

damping levels when compared to an accelerometer sensor.

The two link modd was useful in:

Observing the behavior of the non-minimum phase zeroes when disparate

base boundary conditions are applied.

* ldentifying the predominance of the fundamental mode in the open loop

performance of the slewing manipulator.
» Determining the separation in frequency between successive modes.

» Understanding the relative merits of the various compensators under study.
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These conclusions are highlighted in the following paragraphs.

Transforming the open loop dynamics into modal form highlights the dominance in the
open loop response of the fundamental mode. For example, the infinity norm
amplitude ratio of the 1st versus the 2nd mode is 40:1, and the infinity norm ratio of the
1st versus the 3rd mode is 600:1 for medium payload weight classes. For higher order
modes the infinity norm ratio is still larger. These infinity norm ratios are shown to

increase further till for heavier payload masses.

In addition, the frequency separation between the first and second modal frequency for
the manipulator model increases as the payload mass is increased. If no payload is
used, the 2nd moda frequency is 6 times the frequency of the 1st mode. The 3rd
modal frequency is 18 times the frequency of the 1st mode, etc. If a payload 100 times
the mass of the arm is considered, the 2nd moda frequency is 98 times the frequency
of the 1st mode. The 3rd modal frequency is 316 times the frequency of the 1st mode,
etc. It is worth noting that for the SRMS a payload to arm mass ratio of 100 is

considered a small to medium classin terms of payload mass.

A cost comparison of the controllers under study was summarized. All of the
compensators improved the open loop performance over the workspace. The overal
improvement in performance is 7:1 for the fixed gain compensator, 3:1 for the fixed
robust compensator, and 20:1 for the SV O compensator. Although the stability margin
for the fixed gain controller was relatively low (10° phase margin), its performance
was about two times better than the fixed robust compensator (40° phase margin).
Thus by increasing the robustness of the closed loop system, the fixed robust

compensator sacrificed on performance.
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As a future recommendation, it should be noted that if possible, one should use
collocated sensors and actuator pairs for controlling the flexible body modes. This
would facilitate the task of absorbing the flexible energy in the structure in a loca
manner. For example, one can design the joints such that the gearbox in the joints of
the electromechanical structure allow the vibratory energy passing through the joint to
be observed. This is most readily accomplished by making the joint element more
compliant relative to the surrounding boom elements, or providing strain energy
sensors surrounding the joint in a collocated fashion. In the case of non-existent or
insufficient collocated sensor/actuator pairs, a dynamic model based controller is
required to improve dynamic performance. Present adaptive control techniques cannot
accommodate the non-collocated actuator problem when kinematic nonlinearities are

present.

Finaly, the SYO controller was evauated on the DRS nonlinear simulation. An
implementation of the SVO controller in the Shuttle software was identified. This
strategy allows use of al existing RMS hedth and safety monitoring functions. The
SV O controller developed for this system does not change or delay the trained operator
input command to move the arm, thus the “fed” of the arm has not been atered. The
SV O controller and logic were evauated in a nonlinear smulation, which included the
effects of kinetic and kinematic nonlinear arm dynamics, computer time delays, and
existing Shuttle health and safety software functions. Based on the results, active
damping of the remote manipulator system can be accomplished using the existing joint
actuators and Shuttle computers and software. However, some additional feedback
sensors in the form of accelerometers located at the tip of the arm are required. The
accelerometer sensor location was identified which alowed the nonlinear compensator
to operate over large variations in the shoulder yaw, elbow pitch, and wrist roll, yaw

and pitch arm orientations. The astronaut/operators assessment of the compensator

142



noted that there was a*“ significant increase in damping.” Loads reduction for the RMS
with the compensator was aso cited as an important factor several times during the
sessions. The SVO controller demonstrated significant improvement over the present
arm performance: (1) Damping level was improved by a factor of 3; (2) Peak joint
torque was reduced by a factor of 2 following Shuttle thruster firings. The time
required to damp the tip oscillation to +1 inch is decreased by a factor of 3. This
provides the added potentia benefit of reducing the structural stress in the am
following routine maneuvers involving either joint commands or Shuttle thruster

firings.
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Appendix A
Hyperstability and Positive Definite Systems - Definitions

Hyperstable

The system

X = Ax+ Bu
y=Cx+Du

(A.1)

is Hyperstable if for any uwhere

[u @yt = [Ix(O)] sup [x] (A-2)

the following inequdity holds

Ix()] < k(Ix(0)] + 8) (A.3)

where o and k are positive constants.

Asymptotically Hyperstable

The system is Asymptotically Hyperstable if:

limx(t) =0 (A.4)

to o

Also applies.

Positive Real (PR)

A rational transfer function matrix z(s) is Positive Real if:
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Also

1) z(s)hasreal dements
2) z(s) hasno polesin Refs] >0, the polesonthe jw axis are simple and the
associated residue matrix is non-negative definite Hermitian.

3) z(jw)+ Z (jw) isnon-negative definite Hermitian.

where Z' implies complex conjugate of z

If H(s) = M(s)/ N(s) isaPositive Real (PR) Transfer function, then:

1) The order of M(s) equalsthe order of N(s) + 1.
2) 1/ H(s) ispositive real.

3) M(s) and N(s) haverea coefficients.

4) M(s) and N(s) satisfy the Hurwitz criterion.

5) M(s) and N(s) have zeroes with negative real parts.

Note: It can also be shown that PR matrices have no transmission zeros or
poles in the open right-half of the complex plane, and that the poles on the
imaginary axis are smple and have non-negative definite residues (Anderson,

1967).

Strictly Positive Real (SPR)

For alinear transfer function z(s):
1) If z(s) isPositive Real - it ishyperstable.

2) if z(s) isSrictly Positive Real . = itisasymptoticaly hyperstable.
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Kaman-Y acubovich Lemma

The transfer function

H(s)=D+C(sl —-A)™'B (A.5)

is Strictly Positive Red if there exists a symmetric positive definite matrix P and a

matrix K and L such that for any positive definite Q,

ATP+PA=-Q (A.6)
B'P+K'L'=C

If D=0, then H(s) is Strictly Positive Redl if

B'P=C

Passive

If a system x = Ax has a negative definite dynamic matrix (A <0 or equivaently

A+ A" <0) the systemis passive. Where A =T "AT.

Note: Geometrically, A+ AT <0 means: 0(x,Ax) 0(90°,270°). Thus x(t)" x(t)
decreasesas t — o since the component of x projected onto x is in a direction
oppositeto x. See Figure A.1L.

AX

Figure A.1 Geometric Interpretation of A+ AT <0
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